Discussion started: 9 May 2017

© Author(s) 2017. CC-BY 3.0 License.

Investigation of global nitrate from the AeroCom Phase III experiment

Huisheng Bian^{1,2}, Mian Chin², Didier A. Hauglustaine³, Michael Schulz⁴, Gunnar Myhre^{5,6}, Susanne E. Bauer^{7,8}, Marianne T. Lund⁶, Vlassis A. Karydis⁹, Tom L. Kucsera¹⁰, Xiaohua Pan¹¹, Andrea Pozzer⁹, Ragnhild B. Skeie⁶, Stephen D. Steenrod¹⁰, Kengo Sudo¹², Kostas Tsigaridis^{7,8}, Alexandra P. Tsimpidi⁹, and Svetlana G. Tsyro⁴

1

2

4 5

- ² Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- 10 ³ Laboratoire des Sciences du Climat et de l'Environnement (LSCE), UMR8212, CEA-CNRS-UVSQ, Gifsur-Yvette, France
- 12 ⁴ Norwegian Meteorological Institute, Blindern, Norway
- 13 ⁵ Department of Geosciences, University of Oslo, Oslo, Norway
- 14 ⁶ Center for International Climate and Environmental Research-Oslo, Oslo, Norway
- The Earth Institute, Center for Climate Systems Research, Columbia University, New York, USA
- 16 NASA Goddard Institute for Space Studies, New York, USA
- ⁹ Max Planck Institute for Chemistry, 55128 Mainz, Germany
- 18 ¹⁰ Universities Space Research Association, GESTAR, Columbia, MD, USA
 - ¹¹ School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, USA
 - ¹² Center for Climate System Research, University of Tokyo, Tokyo, Japan.

20 21 22

19

Abstract

23 An assessment of global nitrate and ammonium aerosol based on simulations from nine 24 models participating in the AeroCom Phase III study is presented. A budget analyses was 25 conducted to understand the typical magnitude, distribution, and diversity of the aerosols and their precursors among the models. To gain confidence on model performance, the 26 27 model results were evaluated with various observations globally, including ground station 28 measurements over North America, Europe, and East Asia for tracer concentrations and 29 dry and wet depositions, as well as with aircraft measurements in the Northern 30 Hemisphere mid-high latitudes for tracer vertical distributions. Given the unique 31 chemical and physical features of the nitrate occurrence, we further investigated the 32 similarity and differentiation among the models by examining: 1) the pH-dependent NH₃ 33 wet deposition; 2) the nitrate formation via heterogeneous chemistry on the surface of 34 dust and sea-salt particles; and 3) the nitrate coarse mode fraction (i.e., coarse/total). It is 35 found that HNO₃, which is simulated explicitly based on full O₃-HO_x-NO_x-aerosol 36 chemistry by all models, differs by up to a factor of 9 among the models in its global 37 tropospheric burden. This partially contributes to a large difference in NO₃, whose atmospheric burden differs by up to a factor of 13. Analyses at the process level show 38 39 that the large diversity in atmospheric burdens of NO₃, NH₃, and NH₄ is also related to 40 deposition processes. Wet deposition seems to be the dominant process in determining 41 the diversity in NH₃ and NH₄ lifetimes. It is critical to correctly account for contributions 42 of heterogeneous chemical production of nitrate on dust and sea-salt, because this process 43 overwhelmingly controls atmospheric nitrate production (typically >80%) and determines 44 the coarse and fine mode distribution of nitrate aerosol.

45 46

1. Introduction

- 47 Atmospheric aerosols adversely affect human health and play an important role in
- 48 changing the Earth's climate. A series of multimodel studies have been coordinated by
- 49 the international activity of Aerosol Comparisons between Observations and Models

¹ Joint Center for Environmental Technology UMBC, Baltimore, MD, USA

Discussion started: 9 May 2017

© Author(s) 2017. CC-BY 3.0 License.

(AeroCom) in its Phase I and II model experiments that have systematically assessed the presence and influence of almost all major atmospheric anthropogenic and natural aerosols (such as sulfate, dust, and carbonaceous aerosols) (e.g., Kinne et al., 2006; Schulz et al., 2006; Textor et al., 2006; Koch et al., 2009; Huneeus et al., 2011; Tsigaridis et al., 2014; Kim et al., 2015). Very little attention has been drawn to nitrate aerosol other than its contribution to radiative forcing (Myhre et al., 2013). One obvious reason is that not many models used to include nitrate owing to the chemical complexity of nitrate formation. However, atmospheric nitrate aerosol not only exerts direct effects on air quality and climate, but also uniquely impacts the Earth system by being directly involved in tropospheric chemistry and constraining net primary productivity, hence altering carbon sequestration and ecological effects, via its deposition (Prentice et al., 2001).

Atmospheric nitrate contributes notably to total aerosol mass in the present-day, especially in urban areas and agriculture regions. Nitrate is about a quarter of sulfate in terms of overall global burden, AOD, and direct forcing at the present-day according to the study of AeroCom II direct forcing experiment (Myhre et al., 2013). This conclusion is confirmed by recent publications using various individual models and emission inventories (Bellouin et al; 2011; Bauer et al., 2007; Hauglustaine 2014; Karydis et al., 2016; Mezuman et al., 2016; Paulot et al., 2016). Regionally, considerable evidences from in-situ measurements (Bessagnet et al., 2014; Haywood et al., 2008; Jimenez et al., 2009; Malm et al., 1994; Vieno et al., 2016) and model results (Karydis et al., 2011; Ensberg et al., 2013; Trump et al., 2015) indicate that nitrate becomes one of the major aerosol species in urban and agriculture environments. For example, nitrate concentration is about half of sulfate during the summer season in Beijing (Zhou et al., 2016) and represents a large portion of wintertime aerosol mass in the San Joaquin Valley in California (Pusede et al., 2016).

More importantly, the importance of aerosol nitrate is likely to increase over the century with a projected decline in SO₂ and NO_x emissions and increase in NH₃ emissions (IPCC, 2013). With the reduction of SO₂ emissions, less atmospheric NH₃ is required to neutralize the strong acid H₂SO₄. The excess of NH₃ results in gaseous HNO₃ and NH₃ entering the condensed phase, and their subsequent dissociation yields nitrate and ammonium ions. The trend of future nitrate depends on which is the limited species, NO_x or NH₃, for nitrate formation (Tsimpidi et al., 2007; 2008). Generally, our atmosphere, at its current and foreseeable near future, is still in an NH₃-limited condition according to sensitivity studies by Heald et al. (2012) and Walker et al. (2012). Almost all global models predicted an overall increase of atmospheric nitrate burden during this century based on current available emission inventories (Bauer et al 2007; 2016; Bellouin et al., 2011; Hauglustaine et al., 2014; Li et al., 2014). For example, using CMIP5 future emission projections, Bellouin et al. (2011) concluded that, by 2090, nitrate would become an important aerosol species in Europe and Asia, contributing up to two thirds of the globally averaged anthropogenic optical depth. However, the predicted trend of surface nitrate is mixed. Some studies estimated a consistent increase of surface nitrate (Bellouin et al., 2011), while others pointed out that this increase might vanish or even reverse over some regional urban areas due to the decline of NO_x emissions (Bauer et al.,

Discussion started: 9 May 2017

© Author(s) 2017. CC-BY 3.0 License.

2016; Pusede et al., 2016; Trail et al., 2014). Nevertheless, the potentially increasing importance of nitrate in climate and its large uncertainty in future surface nitrate predictions urge us to characterize model performance and understand the physicochemical mechanisms behind the diversity of nitrate simulations.

Nitrate is also important in that its formation directly affects tropospheric chemistry. First, the formation of nitrate, through either aqueous phase chemical reaction between HNO₃ and NH₃ (Metzger et al., 2002; Kim et al., 1993) or heterogeneous reaction of nitrogen species such as HNO₃, NO₃, and N₂O₅ on the surface of dust and sea salt aerosol particles (Bauer et al., 2004; 2005; Bian et al., 2003; Dentener 1996; Liao et al., 2003), converts gas phase nitrogen species into aerosols. Consequently, the global tropospheric NO_x concentration and the rate of conversion of N₂O₅ to HNO₃ will be reduced (Riemer et al., 2003), which in turn leads to the reduction of atmospheric oxidants. For example, global tropospheric O₃ can be reduced by 5% (Bauer et al., 2007) and tropical Atlantic OH by 10% (Bian et al., 2003) just through the heterogeneous reactions of nitrogen radicals on dust. Second, the most important removal path for nitrogen from the atmosphere is the formation of HNO₃, which is subsequently deposited (Riemer et al., 2003). Since HNO₃ is subject to partitioning between the gas and aerosol phases, the lifetimes of nitrogen species can be shortened by the formation of tropospheric nitrate aerosol because the loss of total HNO₃ will be accelerated by a much higher dry deposition in the aerosol phase.

Large nitrogen deposition occurs over both land and ocean (Dentener et al., 2006; Kanakidou et al., 2012; 2016). Nitrogen deposition can either benefit or impair ecosystem productivity depending on the initial balance of nutrients since different ecosystems have different Nr (reactive nitrogen) availability and retention (Galloway et al., 2004; Prentice et al., 2001). If fixed Nr is deposited as nitrate in forests, it may act as a "fertilizer," stimulating growth and thus enhancing carbon sequestration (Fowler et al., 2015). But when the accumulated deposition exceeds the nutritional needs of the ecosystem, nitrogen saturation may result (Fenn et al., 1996). Soil fertility declines due to the leeching of cations (Milegroet and Cole, 1984) and, thus, carbon uptake diminishes. The balance between fertilization and saturation depends on the spatial and temporal extent of nitrogen deposition. In order to determine the extent to which the emissions of air pollutants will have to be reduced and whether the environment needs to be protected from damage, it is essential to know where and by how much N deposition exceeds nature's tolerance (Dentener et al. 2006; Lamarque et al., 2005; Phoenix et al., 2006).

Here we present a nitrate-focused study that has been organized as a part of the series of AeroCom phase III experiments (https://wiki.met.no/aerocom/phase3-experiments). The goals of this activity are to (1) address the diversity of the nitrate simulation by the AeroCom multi-models and diagnose the driving processes for the diversity, (2) explore the uncertainty of the model nitrate simulations constrained against various measurements from ground station networks and aircraft campaigns, and (3) investigate how the formation of nitrate changes in different models in response to perturbation on key precursors and factors that determine nitrate formation. We focus on the first two objectives in this paper. Such a study directs us on how to improve the representation of

Discussion started: 9 May 2017

© Author(s) 2017. CC-BY 3.0 License.

nitrate aerosol formation and size distribution in climate chemistry models and reveals nitrate effects on global air quality and climate.

Building upon the analysis of the multi-model diversity, three additional sensitivity experiments are designed using the GMI model to further explore the potential sources for the diversity on physical and chemical process-level. First, we explore the impact of pH-dependent NH₃ wet deposition on atmospheric NH₃ and associated nitrogen species. We then reveal the importance of mineral dust and sea salt in the nitrate formation and check the resultant nitrate aerosol size distribution that is particularly important in nitrate forcing estimation.

The paper is organized as follows. Section 2 introduces the experiment setup including the used emission inventories and the participating Aerocom models. Observations of surface tracer concentrations and dry and wet depositions over U.S., Europe, and East Asia, as well as aircraft measurements in the ARCTAS campaigns are described in section 3. We present AeroCom model inter-comparison and the model evaluation using aforementioned observations in section 4. Based on the knowledge from previous sections, we further discuss nitrate formation in response to physiochemical methodologies in section 5 and summarize our major findings in section 6.

2. Experiment setup and AeroCom model description

2.1 Experiment setup

The AeroCom III nitrate experiment comprises one baseline and six perturbation simulations, with the latter designed for assessing the possible future changes of emission and meteorological fields relevant to nitrate formation. Models are advised to use the same prescribed emission datasets for gases and aerosols. Emissions from anthropogenic, aircraft, and ship are obtained from the recently developed HTAP v2 database (Janssens-Maenhout et al., 2015) that provides high spatial resolution monthly emission. For the tracers that are included in ozone chemistry but are not provided by HTAP v2 (i.e. some volatile organic compounds), they should be obtained from CMIP5 RCP85 with a linear interpolation between 2005 and 2010. Biomass burning emissions are the emissions of GFED3 (Werf et al., 2010) in 2008 [http://www.globalfiredata.org/data.html]. The NH₃ emission from ocean is adopted based on the compilation of GEIA emission inventory [Bouwman et al., 1997]. Participating modeling groups use their own emissions of dimenthyl sulfide (DMS), dust, sea salt, and NO from lightning, since they are calculated based on models' meteorological fields.

A full year simulation for 2008 is required for the nitrate model experiment. There are several in-situ observation datasets available in 2008 for model evaluation, including the surface concentration and deposition measurements over the US (CastNet, AMoN, NDAP/NTN), Europe (EMEP), and Asia (EANET), and the aircraft measurements of vertical profiles (e.g. ARCTAS-A, ARCTAS-CARB, and ARCTAS-B). All participating models are required to use the reanalysis or nudged meteorological data for 2008 and allow several months spin up for the baseline simulation.

Discussion started: 9 May 2017

© Author(s) 2017. CC-BY 3.0 License.

2.2 AeroCom models

Nine models participate in the AeroCom III nitrate experiment. Their general nitrate-

related physiochemical mechanisms are summarized in Table 1. Further detailed

information on their thermodynamic equilibrium model (TEQM) is given in Table 2.

193 The models participating in this study are divided into two groups. Group one (CHASER,

194 EMAC, INCA, GISS-MATRIX, and GISS-OMA) run chemical fields together with

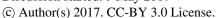
meteorological fields, while group two (EMEP, GMI, OsloCTM2, and OsloCTM3)

simulate chemical fields using archived meteorological fields. Most models in this study

have a horizontal resolution around 2-3 degrees except EMEP with 0.5 degree.

198 Vertically, most models cover both the troposphere and the stratosphere with a peak

altitude up to 0.01 hPa except EMEP that extends vertically up to 100 hPa into the


troposphere only.

All models use full gas phase O₃-NO_x-HO_x chemistry to produce HNO₃ and consider the feedback of nitrate aerosol formation on HNO₃ calculation. However, due to the complexity of chemical mechanisms for organic nitrate compounds and different recommendations for reaction rates, HNO₃ fields produced by the models differ greatly. This difference propagates into the subsequent gas-aerosol reactions for nitrate formation.

These models are very different in their approaches on gas-aerosol reactions in nitrate formation. All models consider reactions between NH₃ and HNO₃. However, models differ dramatically in whether to include heterogeneous reactions on dust and sea salt (Table 1). Some account for both, some for only dust or sea salt, and some do not account for any of them at all. The methods used by the models in accounting for NH₃ and dust/sea salt contributions are also different.

All participating models adopt TEQM to deal with aqueous and solid phase reactions and gas-aerosol partitioning (Tables 1 and 2). This is based on the assumption that volatile species in the gas and aerosol phases are generally in chemical equilibrium. However, the assumption is not always warranted in some cases, as we will discuss in section 5.2. Even with the TEQM approach, nitrate calculation could differ due to treatments of equilibrium constants or chemical potentials, solute activity coefficients, water activity, and relative humidity of deliquescence (RHD). The parameterizations adopted by the models to deal with multicomponent activity coefficient, binary activity coefficient, and water activity are given in table 2. GISS-OMA, Oslo-CTM2 and Oslo-CTM3 are special in that they assume aerosols to be metastable so that the model does not take into account formation of solids in this study. All other models do consider the effect of the hysteresis of particle phase transitions. All models also assume that the overall particles are large enough to neglect the Kelvin effect.

The participating models call the TEQMs in different ways to account for aerosol size effect. All the TEQMs (ISORROPIA-I, ISORROPIA-II, MARS, RPMIRES, INCA, and EQSAM3) assume particles to be internally mixed, i.e. all particles of the same size have the same composition. However, some parent models (CHASER, EMEP, GMI, INCA, GISS-MATRIX and GISS-OMA) call their TEOMs only once for fine mode aerosol

234 particles, while the others (EMAC, OsloCTM2 and OsloCTM3) call their TEQMs from 235 different aerosol size bins. For example, Oslo-CTM2 and Oslo-CTM3 consider a bi-236 modal aerosol size-spectrum with two major aerosol modes, fine and coarse, and 237 calculate gas-aerosol equilibrium partitioning with EQSAM3 first for fine mode and then 238 for coarse mode. Additionally, to account for kinetic limitations, EMAC calculates the 239 phase partitioning in two stages. In the first stage, the amount of the gas-phase species 240 that is able to kinetically condense onto the aerosol phase within the model time step is 241 calculated, while in the second stage, the TEQM redistributes the mass between the two 242 phases assuming instant equilibrium (Pringle et al., 2010).

243

The TEQMs also differ in the chemical components considered. Specifically, the TEQMs in CHASE, EMEP, GISS-MATRIX, GISS-OMA, GMI and INCA include only species of sulfate, nitrate, ammonium and their gas, liquid, and solid components. The models Oslo-CTM2 and Oslo-CTM3 add NaCl and HCl, while the model EMAC further expands the species by including dust-related crustal material such as Ca²⁺, K⁺, and Mg²⁺.

248 249 250

251

252

253

254

255

256

244

245

246

247

These TEQMs differ in their computational approaches as well. Computational efficiency is a prime consideration for a TEQM that is designed for incorporation into a global air quality and climate study. To speed up the calculation, TEQMs typically divide the system into sub-domains based on RH and concentrations of ammonium, sodium, crustal cations, and sulfate. Corresponding approximation could be adopted for each sub-domain with the minimum numbers of equilibriums and unknown components. As listed in table 2, the numbers of sub-domains are 4, 5, 4, 2, 3, and 3 for the TEQM ISORRPIA-I, ISORROPIA-II, MARS, RPMIRES, INCA, and EQSAM3, respectively.

261

262

263

264

The ways to account for the contribution of dust and sea salt to nitrate formation are also different. Some models (EMAC, Oslo-CTM3, and Oslo-CTM2) include dust and/or sea salt components in their TEQM models directly, while some models (EMEP, GISS-OMA, GMI, and INCA) use an approach of first order loss rate outside their TEQMs to account for the heterogeneous reactions of HNO₃ on the surface of dust and sea salt. For the latter approach, the gamma rates and their RH dependence adopted by the models differ as well.

265 266 267

268

269

270

271

Dry and wet deposition of NH₃, ammonium nitrate, and ammonium sulfate are treated similarly to other gas and aerosol tracers in the models. It is worth pointing out that there is a different consideration for Henry's law constant of NH₃ used by the models. Some models modify it based on the pH value of cloud water while others do not. We will discuss the impact of these two treatments on nitrate simulation in section 5.1.

272 273 274

275

276

277

We introduce only the major characteristics of thermodynamic equilibrium models since this study aims for the evaluation and explanation of overall nitrate diversity among the GCM/CTM models from all potential aspects. The detailed discussion of the models chemical mechanism of gas phase reactions and the aerosol optical properties adopted by the models is also beyond this work. Readers could refer to the references listed in Tables 1 and 2 for any further details.

Discussion started: 9 May 2017

© Author(s) 2017. CC-BY 3.0 License.

3. Observations

We use surface measurements from ground station networks and aircraft campaigns to evaluate modeled surface concentrations, dry and wet depositions, and vertical distributions of nitrate and related species (Table 3).

284 285

280

281

282

283

287

3.1 Surface measurements of concentrations and deposition rates

286 Ambient concentrations of sulfur and nitrogen species throughout the US and Canada have been measured by the ground station network CASTNET (Clean Air Status and 288 Trends Network) (Figure 1). The measurements use a 3-stage filter pack with a controlled 289 flow rate. The measurements of CASTNET do not include NH₃. AMoN (Ammonia 290 Monitoring Network), measuring concentrations of ambient NH₃, has been deployed at 291 CASTNET sites starting from October 2007 using passive samplers. The corresponding 292 tracers' surface concentration measurements over Europe have been conducted by EMEP 293 (The European Monitoring and Evaluation Programme). The measured sites of all these 294 networks are located in rural areas or sensitive ecosystems, representing a larger region 295 by avoiding influences and contamination from local sources. Surface concentrations 296 over East Asia are inferred from the measurement of dry deposition by EANET (Acid 297 Deposition Monitoring Network in East Asia). This network provides acid deposition 298 from a regional monitoring network including 13 countries in East Asia using 299 standardized monitoring methods and analytical techniques.

300 301

302

303

304

305

CASTNET also provides dry deposition of sulfate and nitrogen species. Direct measurements of dry deposition fluxes (D) are expensive so D is calculated as the measured pollutant concentration (C) multiplied by the modeled dry deposition velocity (V_d). V_d is either estimated by the Multi-Layer Model fed with measured hourly meteorological data or derived from historical average V_d for sites with discontinued meteorological parameters.

306 307 308

309

310

311

312

313

314

Direct measurements of wet deposition fluxes of sulfate, nitrate, and other ions have also been performed by NADP/NTN (the National Atmospheric Deposition Program / National Trends Network) across the contiguous US, Canada, Alaska, and the US Virgin Islands and EANET over East Asia. Sites are predominantly located away from urban areas and point sources of pollution. Each site has a precipitation chemistry collector and gauge. Both networks can measure wet deposition for a continuous period (weekly for NADP/NTN and daily for EANET), or every precipitation event if using an automated collector (wet-only sampling).

315 316 317

318

319

320

321

322

323

324

325

Data is quality assured for all measurements. Measurements over North America use automated screening techniques, semi-annual calibration results, site operator comments, and manual data review. Quality assurance of EMEP is carried out on both the national level and by the Chemical Co-ordinating Centre (CCC). The quality of EMEP measurements is not equal at the national level (Schaap et al., 2002; 2004). Sites in North, Western and Central Europe were generally well equipped and performing, while sites in the rest of Europe suffered from inadequate sampling and calibrating methods due to political and/or economical reasons. The quality of ammonia measurement is relatively

low since some laboratories experienced contamination problems (Williams et al., 1992).

Discussion started: 9 May 2017

© Author(s) 2017. CC-BY 3.0 License.

Although EANET adopts standardized monitoring methods and analytical techniques, quality assurance is carried out on the national level.

3.2 Aircraft measurements of vertical profiles

Aircraft campaign measurements during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) are used to evaluate tracer vertical distribution simulated by the models (Bian et al., 2013; Jacob et al., 2010). Three phases of the campaign, ranging from Northern Hemisphere mid-latitude industrial region (ARCTAS-CARB, June 2008) to high latitude Arctic regions influenced by longrang pollution transport (ARCTAS-A, April 2008) and by local boreal biomass burning (ARCTAS-B, July 2008), provide well encompassing environment observations. All flights were conducted by the NASA DC-8 aircraft and the flight tracks of these three phases are presented in Figure 2. An onboard HR-ToF-AMS instrument (Cubison et al., 2011; DeCarlo et al, 2006) measured fine mode aerosol concentrations (PM1) along the fight track including NO₃, NH₄⁺, and SO₄² at STP conditions (1013mb and 273.15K) at a sampling time interval of ~12 seconds. Accuracy estimate of 2-standard deviations, likely conservative, is 34% for inorganics, dominated by the uncertainty in particle collection efficiency due to particle bouncing (Huffman et al., 2005).

4. Model intercomparison and evaluation

4.1 AeroCom model inter-comparisons of global distributions and budgets 4.1.1 NH_3 and NH_4^\pm

Six models use HTAP2 anthropogenic emissions, two (GISS-MATRIX and GISS-OMA) use CMIP5 emissions, and one (INCA) uses ECLIPSE emissions. Table 4b shows that eight models have the annual NH₃ emission values within 5% of the value from the AeroCom experiment recommended emission inventories, but INCA is 11% higher. The similar emission distributions ensure that the examined inter-model diversities are truly caused by the differences in physicochemical processes among the models. The normalized root-mean-square deviation (NRMSD) of NH₃ global burden among models is 1.17 and 0.33 with and without EMAC included. This drastic change in global burden NRMSD by EMAC is caused by its special treatment of wet deposition. In fact, the removal of trace gases and aerosol particles by clouds and precipitation in EMAC is not calculated based on empirically determined, fixed scavenging coefficients, but rather by solving a system of coupled ordinary differential equations, explicitly describing the processes involved (Tost et al., 2006). This method resolves feedback mechanisms between the multi-phase chemistry and transport processes involved. The liquid phase reaction set used converts all the scavenged NH3 (or HNO3) into NH₄ (or NO₃) in the liquid phase so that at the end everything that is deposited is the total NH_4^+ and NH3.

 Atmospheric NH₄⁺ is produced entirely by NH₃ chemical transformation. The models simulate NH₄⁺ much closer in chemical production (difference less than a factor of 2) than in lifetime (difference up to a factor of 5.2), indicating removing rates are a key factor in controlling the global burden of NH₄⁺. For example, CHASER has a much longer lifetime of NH₄⁺ (i.e. 9.8 days versus 4.3 days in average), which indicates a slow deposition

Discussion started: 9 May 2017

© Author(s) 2017. CC-BY 3.0 License.

removal of NH₄⁺ from the atmosphere. Consequently, CHASER simulates a much higher atmospheric NH₄⁺ burden than other models.

373 374

375376

377

378

379

4.1.2 HNO₃ and NO₃

 HNO_3 , an important nitrate precursor, differs by up to a factor of 9 in its global tropospheric burden among the models (Table 4c). All models simulated HNO_3 based on a full gas phase O_3 - HO_x - NO_x chemistry and coupled it with aerosol chemistry. This HNO_3 diversity will naturally be propagated into the NO_3^- simulation. However, further discussion of the detailed consideration of full gas-aerosol chemistry for HNO_3 diversity among the models is beyond the scope of this study.

380 381 382

383

384

385

386

387

388

389

390 391

392

393

394

395

396

397

398

402

403

404

The resultant aerosol product (i.e., NO₃) does not entirely follow its precursor (i.e., HNO₃) in terms of global burden: EMEP has very low HNO₃ but high NO₃, two GISS models (MATRIX and OMA) simulate high HNO₃ but low NO₃, while OsloCTM3 has an average HNO₃ but more than triple high NO₃ than average (Tables 4a and 4c). Furthermore, the difference in NO₃ global burden (up to a factor of 13) is larger than that of HNO₃. Differences in chemical mechanisms of NO₃ production could be a potential explanation along with the difference in HNO₃ precursor. Unfortunately, only GMI and INCA provide a detailed NO₃ chemistry budget analysis. Nevertheless, we can infer that the total chemical production of NO_3^- must be very low (~ 10Tg) in the two GISS models while very high (> 100 Tg) in OsloCTM2 and OsloCTM3 based on the reported total NO₃ loss. Combining this information with the HNO₃ global tropospheric burden (Table 4c), we can further infer that the chemical conversion from HNO₃ to NO₃ must be lowest in the two GISS models while highest in the two Oslo models. Several factors could influence this conversion, such as the availability of alkaline species of mineral dust and sea-salt particles and the physicochemical mechanism of nitrate formation on dust and sea-salt, availability of NH₃ after combining with SO₄²⁻, and the atmospheric meteorological fields of temperature and relative humidity. More discussions are given in sections 5.2 and 5.3.

399 400 401

Atmospheric lifetime of NO₃ differs up to a factor of 4, from about 2 days in GMI and OsloCTM2 to larger than 7 days in GISS-OMA and GISS-MATRIX. The slower removal processes in the two GISS models compensate the low chemical production and help to maintain their NO₃ atmospheric burden (Figure 3 and Table 4a).

405 406

4.2 Model-observation comparisons

407 408

409

4.2.1 Comparisons of surface concentrations over North America, Europe, and East Asia

- 410 Understanding diversity among model simulations and potential physiochemical
- 411 processes behind the difference is important but not sufficient. The information has to be
- 412 combined with the knowledge of model performance obtained directly from comparisons,
- 413 particularly down to processes level, against various measurements to gain a direction of
- any improvement. Figures 4a-c show a model-observation comparison for surface
- mass/volume mixing ratios of NO₃, NH₄, NH₃, HNO₃, and SO₄² over North America
- 416 (CastNET), Europe (EMEP), and East Asia (EANET). Each point represents a monthly

Discussion started: 9 May 2017

© Author(s) 2017. CC-BY 3.0 License.

417 mean concentration at one observational site. Generally, the agreement between model 418 and observation is better for aerosol components than for gas tracers (i.e. the precursor 419 species NH₃ and HNO₃) over all three regions. All models underestimate NH₃ surface 420 volume mixing ratio with a ratio of model to observation down to 0.14, while most 421 models overestimate surface HNO₃ volume mixing ratio with a ratio up to 3.9 over North 422 America. The worse performances of NH₃ against observations may be also associated to 423 their relatively lower measurement accuracy, i.e. easier to be contaminated during 424 measurement (Williams et al., 1992). Among aerosol simulations, model performance is very similar for NH₄ and SO₄²⁻, while slightly worse for NO₃⁻ that is dispersed further 425 426 away from the 1:1 line, particularly at low NO₃ values. The NO₃ simulation over East 427 Asia is worst with the average normalized root mean square to be 1.3 and 1.8 higher than 428 that over North America and Europe, respectively.

429 430

431

432

433

434

435

436

437 438

439

440

441 442

443

444

445

446

4.2.2 Comparisons of vertical profiles with aircraft measurements during the ARCTAS field campaign

Evaluation of model performance presented in 4.2.1 for the surface concentrations in the source regions is highly dependent on the accuracy of the emission inventory. On the other hand, evaluation using aircraft measurements, particularly over remote regions, provides further examination of models' physicochemical evolution during transport. Here we use data from three phases of the ARCTAS aircraft campaign (section 3), and the results are shown in Figure 5. All model results of NO_3^- , NH_4^+ , and SO_4^{2-} are sampled along flight track and averaged regionally within 1km vertically for each campaign phase before comparing with the corresponding aircraft measurements. Note that only EMAC, EMEP and GMI report daily 3D global tracer concentrations, while the others report monthly only. Note also that only EMEP and GMI adopt daily biomass burning emission while the others use monthly emission. To verify the representativeness of monthly mean concentration in capturing the main features exhibited in model-observation comparisons, daily and monthly concentrations of the three models are used in the same spatial sampling to compare with the measurements (see the green lines for daily and red for monthly in the figure). The comparison keeps its main features as shown when using both daily and monthly model data.

447 448 449

450

451

452

453

454 455

456

457 458

459

460

461

462

During ARCTAS-A, which was conducted in April 2008 and was based in Fairbanks, Alaska, none of the models captures the long-range transport of aerosols primarily from Asia, which enter Polar Regions at altitudes between 2-7 km (Fig. 3 in Bian et al., 2013). Except CHASER and EMAC, all models also report a significant underestimation of NH₄⁺ and SO₄²⁻ in boundary layer. A previous assessment of pollution transport to the Arctic indicated that aerosol wet removal plays an important role in the uncertainty of Arctic aerosols (Shindell et al., 2008). Another potential reason is that some large fire activities in Siberia during April 2008 (Jacob et al., 2010) may be missed in the GFED3 emission inventory. The underestimation of SO₄²⁻ may help bring up NO₃⁻ production, particularly at high altitudes. During ARCTAS-CARB, which was conducted in June 2008 based in Palmdale, California, agreement between model and measurements is much improved. Almost all models show a rapid vertical decease from surface to free troposphere, which is consistent with the measurements of SO₄²⁻ and NH₄⁺, but not NO₃⁻. The observation shows a maximum of NO₃⁻ at about 1.5 km, which is not represented by

Discussion started: 9 May 2017

© Author(s) 2017. CC-BY 3.0 License.

any of the models. During ARCTAS-B, which was conducted in July 2008 and was based in Cold Lake, Canada, when there were frequent local wild fires, model performances are

mixed. In general, most models underestimate concentrations of NO₃, NH₄ and

SO₄²-below 4 km. CHASER model is special in that it overestimates SO_4^{2-} significantly.

This may be contributed to high (near surface) to comparable (free troposphere) model

simulation of NH₄ but an underestimation of NO₃. Different from other models, the

469 INCA model shows an enhancement of pollutants in the upper troposphere with

concentrations much higher (more than 5 times) than observations. This behavior may be

derived from a much vigorous vertical uplifting to the upper troposphere as revealed from

Fig. 3a-3b combined with a low NH₃ Henry's law constant used by INCA, see discussion in section 5.2.

474 475

476

477

478

Note that all measurements and model data we discussed above are for fine mode aerosols. Total NO_3^- (orange line using monthly model output) is also shown in the figure to reveal whether a changing of partitioning of fine and coarse mode NO_3^- could improve the model-observation comparison. It seems that the new version of OsloCTM3 may put too much of NO_3^- in coarse mode.

479 480 481

4.3 Model-observation comparison for dry and wet deposition

482 483

484

485

4.3.1 Dry deposition

The budget analyses in section 4.1 concluded that dry and/or wet depositions are most likely the main processes driving the diversity in the model simulations. Thus, further evaluation of deposition processes is needed to identify any potential problematic model.

486 487 488

489

490

491

492

493 494

495

496

497

498

499

500

501

502

503

The dry depositions of NO₃, NH₄, HNO₃, and SO₄²⁻ simulated by the models are compared against CASTNET measurements over North America (Figure 6). Generally, the overestimation of surface HNO₃ concentrations (Figure 3a) results in the higher dry depositions of HNO₃, but this is not the case for NO₃. Meanwhile, most of the models give a better dry deposition simulation for aerosol SO_4^{2-} and NH_4^+ than for aerosol NO_3^- , except CHASER. Specifically, GISS-OMA and GISS-MATRIX have wide spread dry NO₃ deposition at any given measurement value. In other words, the two models underestimate NO₃ dry deposition significantly at many observational stations, which does not occur in the other models. This low dry deposition simulation may occur outside North America as well because the global dry depositions of the two models are lower than others (Table 4a). OsloCTM2 overestimates NO₃ dry deposition significantly, which is probably linked to its larger coarse fraction of the nitrate aerosol (see discussion in section 5.3). OsloCTM3 improved its dry deposition scheme although the model still overestimates the dry deposition. We will discuss the OsloCTM2 NO₃ simulation over North America by combining the model's wet deposition in the next section. NH₄⁺ dry deposition is low in GMI but very high in CHASER. This performance is also extended

504 505 506

4.3.2 Wet deposition

globally as summarized in Table 4b.

The wet deposition simulations from the nine models are compared with surface measurement over North America (Figure 7a) and East Asia (Figure 7b) for oxidized

Discussion started: 9 May 2017

© Author(s) 2017. CC-BY 3.0 License.

509 NO_3^- (i.e. total NO_3^- and HNO_3), total NH_4^+ and NH_3 (tNH_4^+), and SO_4^{2-} . All models tend to underestimate the wet deposition of tNH_4^+ and SO_4^{2-} over the two regions. Models 510 511 EMAC, GMI, OsloCTM2 and OsloCTM3 have relatively high wet removal for oxidized 512 NO₃, while EMEP removes much less than others over North America. All models' wet deposition of oxidized NO₃ is biased low over East Asia. As we discussed above, 513 OsloCTM2 and OsloCTM3 have very high dry NO₃ depositions (Figure 6) compared 514 515 with CASTNET observations. The overall high dry and wet NO₃ depositions along with 516 high atmospheric concentrations (Figure 4a) indicate that the chemical formation of 517 NO₃ in the two models must be also high. This performance might be also true on global 518 scale since the inferred chemical productions of NO₃ in the two models are the highest (Table 4a). CHASER has the lowest tNH₄ wet deposition. This may result in a very high 519 NH₄ dry deposition (Figure 6) and concentration (Figures 4a-c, 5) compared with 520

Note that we use the traditional approach of comparing models' grid box mean values with observations, which does not take into account the impact of the models' horizontal resolutions in their representation of observations (Schutgens et al., 2016). Since majority models (except EMEP) have horizontal resolutions around 2-3 degrees, the models grid box means tend to smooth out extreme (i.e. very low or high) observations. Reflecting on the scattering plots of model (y-axis) and observation (x-axis) is that the slopes of fitting lines are generally less than 1 (Figures 4a-d, 6, 7a-b).

observations and other models. Overall, wet deposition seems to be the dominant process

530 531 532

533

534

535

536

537

538539

540

521

522

523524

525

526

527

528

529

5. Discussion of major uncertainties in nitrate formation

in determining the diversity in NH₃ and NH₄ lifetime (Table 4b).

Large uncertainties of nitrate studies result from the complexity of the simulations which must consider a comprehensive NO_x-NMHC-O₃-NH₃ chemistry and a thermodynamic equilibrium model (TEQM) to partition semi-volatile ammonium nitrate between the gas and aerosol phases. Nitrate aerosol concentrations depend on temperature, relative humidity (RH), and concentrations of HNO₃, NH₃, NH₄⁺, SO₄²⁻, Cl⁻, Na⁺, Ca²⁺, K⁺, Mg²⁺, organic acids, among others. A further complicating factor is that the equilibrium for the coarse mode is somewhat questionable (Feng and Penner, 2007). In addition, wet removal of NH₃ is very sensitive to the correction of pH in cloud water. We will discuss some of these uncertainties below.

541542543

5.1 pH-dependent NH₃ wet deposition

Gas tracer NH₃, a precursor of ammonium aerosol, experiences atmospheric wet
 deposition and its deposition rate is typically calculated using Henry's Law. Henry's law
 constant (H) of gases in water is usually given at 298 K (indicated by Θ in superscript)
 and can be adjusted by temperature (T).

$$H(T) = H^{\Theta} * \exp\left(-\frac{\Delta H_{sol}}{R} \left(\frac{1}{T} - \frac{1}{T^{\Theta}}\right)\right)$$
 (1)

Here ΔH_{sol} is the enthalpy of dissolution and R is the gas constant.

549

For some acidic/basic gases, including NH₃, Henry's law constant is also a function of pH in cloud water (a.k.a effective Henry's law constant H^{Θ^*}). As explained in the

Appendix, the H^{Θ^*} is inferred from H^{Θ} with a correction of pH (pH = $-\log_{10}[H^+]$) as

© Author(s) 2017. CC-BY 3.0 License.

568

569

570 571

572

573

574 575

576 577

578

579

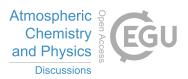
580 581

582

583 584

585

586 587


588

589

590

591 592

593 594

$$H^{\Theta^*} = H^{\Theta} \frac{K_{al}[H^+]}{K_w} \tag{5}$$

 $H^{\Theta^*} = H^{\Theta} \frac{K_{al}[H^+]}{K_w} \tag{5}$ Here, $K_{al} \approx 1.8 \times 10^{-5}$ and $K_w = 1.0 \times 10^{-14}$ at 298 K in pure water (see Appendix). However, not every model accounts for pH adjustment (i.e. the reaction of equation 2 in Appendix) 553 554 for NH₃ dissolution. More accurately, the EMAC model implicitly calculates the 555 556 effective Henry's law constant by solving a set of partial differential equations, which 557 includes not only the gas-liquid phase equilibria, but also the reactions in the liquid phase 558 (i.e. dissociation or acid-base equilibria, Redox reactions and photolysis reactions in the 559 liquid phase, see Tost et al. (2006)). Therefore, the gas-liquid phase equilibrium is 560 explicitly calculated based on the chemical mechanism used in the liquid phase. As listed in Table 5, the rest of the models are generally divided into two groups based on their 561 effective Henry's law constant: (1) INCA, GISS-OMA and GISS-MATRIX has $H^{\Theta^*} \le$ 562 100 (L-theta without pH correction) and (2) CHASER, GMI, OsloCTM2 and Oslo-563 CTM3 has $H^{\Theta^*} > 10^{+5}$ (H-theta with pH correction). The NH₃'s H^{Θ^*} adopted by the 564 565 models varies dramatically, up to an order of 6 in magnitude among all the models and a 566 factor of 10 just for the models in H-theta group (Table 5). The latter is corresponding to 567 a correction for pH ranging from 4.5 (Oslo-CTM2) to 5.5 (CHASER).

To examine how sensitive of NH₃, NH₄ and NO₃ simulations in response to the magnitude of NH₃'s H $^{\Theta*}$, we performed a sensitivity experiment, named TWET, in the GMI model in which there was no pH adjustment for NH₃ Henry's law constant (i.e. H^{Θ^*} =61 instead of 1.05e+6, see table 6). The resultant annual budgets of dry/wet deposition, chemistry production and loss, and atmospheric loading of NH₃, NH₄ and NO₃ are summarized in Table 7, the tracers' vertical zonal mean distributions are shown in Figure 8, and the comparisons with the ARCTAS measurements for NH₄ and NO₃ are shown in Figure 9. For convenient comparison, the GMI baseline results are given in the table and figures as well. There is a dramatic decrease (from 17.5 to 1.1 Tg) in NH₃ wet deposition when using pure water NH₃ Henry's law constant. Consequently, NH₃ will remain in the atmosphere (i.e. ~ 8 times more atmospheric NH₃) to produce ~1.6 times more NH₄ chemically. This, in turn, greatly increases atmospheric NO₃ to 0.97 Tg from 0.26 Tg reported in baseline simulation. A large portion of the increased NH₃, NH₄ and NO₃ resides in the upper troposphere and close to the tropopause region, while the changes of the tracers in the lower troposphere are relatively small, as shown in Figure 8. These accumulations at high altitudes are far above (i.e. ~ 50 times for NH₄ and NO₃) the ARCTAS observed tracer amounts as shown in Figure 9. The TWET experiment might be an explanation of NH₄ and NO₃ accumulations near the tropopause region (Figure 3a-b) in the INCA model whose NH₃ Henry's law constant H^{\text{\text{\text{\text{\text{P}}}}}} is 74 without pH correction (i.e. a L-theta model, table 5). However, it is puzzling that the NH₃ simulations by GISS-MATRIX and GISS-OMA, those are the models with L-theta, are closer to the simulations of the models with H-theta, i.e. no NH₄ and NO₃ accumulation near the tropopause and comparable removal of NH₄ (Figure 3a-b and Table 4b).

5.2 Contribution of dust and sea salt on nitrate formation

595 In the presence of acidic accumulation-mode sulfuric acid containing aerosols, HNO₃, 596

NO₃ radicals, and N₂O₅ will deposit on larger alkaline mineral or salt particles (Dentener

Discussion started: 9 May 2017

© Author(s) 2017. CC-BY 3.0 License.

et al., 1996; Gard et al., 1998; Hauglustaine 2014; Karydis et al., 2016; Murphy and Thomson 1997; Paulot et al., 2016). Considerable evidence shows that the majority of atmospheric nitrate is formed via reactions associated with dust and sea salt (Allen et al. 2015; Itahashi et al., 2016; Karydis et al., 2016). Coarse mode nitrate overwhelmingly dominates over remote oceanic regions (Itahashi et al., 2016). Over wide land regions, nitrate also quite often exists in the form of supermicron NO₃ balanced by the presence of mineral cations arising from transport of crustal dust and sea spray aerosol (Allen et al., 2015; Lefer and Talbot; 2001).

Investigation of nitrate interactions with mineral dust and sea salt depends on the simulation approach adopted in a model. The traditional equilibrium approach to partition semi-volatile HNO₃ between the gas and aerosol phases is no longer possible since the time to reach equilibrium on coarse mode particles (several hours to days) is typically much longer than the chemical time step used in a global model (less than 1 hour) (John et al., 1989; Myhre et al., 2006). Meng and Seinfeld (1996) found that on longer time scales, when NH₃/HNO₃ started to condense on larger aerosols, their gas phase concentrations decreased so that some of the condensed matter can be driven back to the gas phase from the small semi-volatile aerosols. A fix to a non-equilibrium state would be to implement a kinetic formulation for the particles that have a long equilibrium time scale (Feng and Penner, 2007; Karydis et al., 2010). However, implementing explicit kinetics in a global model would be computationally expensive and, hence, is not feasible for long-term climate simulations. Several approximations, therefore, have been developed to compromise accuracy and efficiency.

Four such approximations are adopted by the nine models participating in this study: 1) using equilibrium calculations for fine mode particles only while neglecting nitrate formation on coarse mode particles (CHASER and GISS-MATRIX); 2) combining equilibrium calculation for a solution of SO_4^{2-} - NO_3^{-} - NH_4^{+} - H_2O and heterogeneous reaction calculation for nitrogen uptake on dust and sea-salt using a first-order loss rate (EMEP, GMI, GISS-OMA and INCA); 3) running equilibrium model including NH₃, dust and sea salt repeatedly for aerosol sizes from fine mode to coarse mode (Oslo-CTM2 and Oslo-CTM3); and 4) using only the fraction of the gas that can kinetically condense within the time step of the model in the equilibrium calculations for each aerosol size mode (EMAC).

Nitrate is formed primarily on dust and sea salt by GMI (88%) and INCA (82%) (see Table 4a). INCA further separates the formation as 45% on dust and 37% on sea-salt. The above-mentioned approach 1 is problematic due to absence of coarse mode nitrate, an important portion of nitrate, which results in relatively low nitrate burdens for CHASER and GISS-MATRIX. Unfortunately, the other models are missing a detailed nitrate chemistry budget report. A potential impact of dust and sea-salt on nitrate formation, nevertheless, can be inferred from the approach adopted by a model. For example, OsloCTM2 and OsloCTM3 adopt approach 3. Although the model allows fine mode particles to reach equilibrium first, the subsequent equilibrium calculation for coarse mode particles may still produce coarse mode nitrate too quickly, see discussion of the ratio of coarse model nitrate in the next subsection. To avoid such overestimations on the

Discussion started: 9 May 2017

© Author(s) 2017. CC-BY 3.0 License.

production of coarse mode nitrate, EMAC allows only a fraction of HNO₃ to partition in the aerosol phase by assuming diffusion limited condensation (Pringle et al., 2010).

To further understand the role of homogeneous and heterogeneous chemical reaction processes in nitrate formation, we conducted two more sensitivity experiments, TnoCNH3 and TnoCHET, with the GMI model (Table 6). Experiment TnoCNH3 turned off chemical conversion of NH₃ to NH₄ in the GMI thermodynamic equilibrium model, while experiment TnoCHET excluded the nitrate formation via heterogeneous reaction of gas HNO₃ on the particles of dust and sea salt. The budget report, vertical zonal mean distribution and model-observation comparison of NH₃, NH₄ and NO₃ are given in Table 7 and Figures 8-9, respectively. It is not surprising that experiment TnoCNH3 gives a higher atmospheric NH₃ burden (0.32 Tg) compared with baseline (0.11 Tg) with little NH_4^+ left (from its initial field). The interesting thing is that the formed NO_3^- has only slightly decreased compared with baseline (from 0.26 to 0.20 Tg), confirming the importance of NO₃ formation via dust and sea salt. For experiment TnoCHET, the simulations of NH₃ and NH₄ stay the same but the formed NO₃ is decreased dramatically (from 0.26 to 0.10), indicating that NO₃ formation via NH₃ chemistry alone in the GMI model is relatively small. The chemical production of NO₃ is about 6 times larger in TnoCNH3 (via dust and sea salt) than in TnoCHET (via NH₃). However, the NO₃ produced via NH₃ chemistry (TnoCHET) is non-negligible over remote regions impacted by long-range transport, as shown in the analysis of April Alaska observations in Figure 9.

5.3 Nitrate size distribution

Unlike sulfate aerosol, a noticeable fraction of nitrate aerosol is in the coarse mode. Having an accurate aerosol size distribution is critical in climate forcing estimations, since large size particles have a relatively small optical cross section at a given aerosol mass loading and the nitrate material coating on dust particles has almost no direct impact on the dust optics, although the greatly impact dust lifetime (Bauer et al., 2007). Given that the deposition velocity of a coarse particle is greater than that of a fine particle, an accurate size distribution is also necessary to estimate deposition of particulate nitrates (Yeatman et al., 2001; Sadanaga et al., 2008). This estimation is particularly important over oceans where coarse mode nitrate dominates (Itahashi et al., 2016) and nitrogen supply is often in deficit (Hansell and Follows, 2008).

As we have discussed in section 5.2, nitrate size distribution varies with the approaches adopted for nitrate formation on coarse mode aerosols (i.e. dust and sea salt). Figure 10 gives the burdens of nitrate in fine mode and coarse mode portions and the ratio between coarse mode and total (f_c) for the eight discussed models. The ratio is ranging from 0 (CHASER and GISS-OMA), ~50% (EMAC, GMI and INCA), ~80% (EMEP and OsloCTM2), and 97% (OsloCTM3). The two OsloCTMs give the highest f_c partially because they run TEQM model for coarse model particles.

A wide range of f_c , from 0 to > 90%, has been reported previously by model simulations (Adams et al., 2001; Bauer et al., 2007; Jacobson 2001), while the range is narrowed down to 40-60% for the model studies using the approach that solves dynamic

Discussion started: 9 May 2017

© Author(s) 2017. CC-BY 3.0 License.

mass transfer equation for coarse mode particles (Feng and Penner, 2007; Xu and Penner, 2012).

It is worth pointing out that aerosol microphysics modify aerosol size as well. For example, a process like coagulation would also allow NO_3^- to mix with other particles and enter coarse mode aerosol. New particle formation/nucleation would add $NH_3/NH_4^+/NO_3^-$ into the ultra fine mode. Except EMAC and GISS-MATRIX, majority models involved in this study are bulk aerosol models that do not account for aerosol microphysics.

It is challenging to verify the nitrate size distribution globally due to the limited measurements on time and space. Measurements over regional and station sites indicated that the ratio of f_c could be very high and vary seasonally over oceanic sites. For example, annual mean f_c during 2002-2004 from the Fukue supersite observatory is about 72% with a seasonal variation of 60–80% in winter and of around 80% in summer (Itahashi et al., 2016).

However, the ratio could be varied dramatically over land or the areas affected by land pollution. For example, observations of fine and coarse particulate nitrate at several rural locations in the United States indicated that nitrate was predominantly in submicron ammonium nitrate particles during the Bondville and San Gorgonio (April) campaigns, in coarse mode nitrate particles at Grand Canyon (May) and Great Smoky Mountains (July/August), and both fine and coarse mode nitrate during the studies at Brigantine and San Gorgonio (July) (Lee et al., 2008). Allen et al. (2015) examined aerosol composition data collected during the summer 2013 SOAS and concluded that inorganic nitrate in the southeastern United States likely exists in the form of supermicron NO₃, balanced by the presence of mineral cations arising from the transport of crustal dust and sea spray aerosol. The measurements over Harvard Forest, a rural site in central Massachusetts. supported that the majority of nitrate mass was associated with water-soluble supermicron soil-derived Ca²⁺ in an acidic environment (Lefer and Talbot, 2001). Measurements of coarse-mode aerosol nitrate and ammonium at two polluted coastal sites, Weybourne, England and Mace Head, Ireland, during polluted flow when the air had passed over strong source regions of the UK and northern Europe, showed 40-60% of the nitrate was found in particles with diameter >1 μm, but under clean marine conditions almost 100% conversion was seen (Yeatman et al., 2001).

6. Conclusions

We present the AeroCom phase III nitrate study by assessing aerosol simulations of nitrate and ammonium and their precursors with nine global models. Five of the models couple the chemical calculation online with meteorological simulation, and four use archived meteorological fields driving chemistry. To focus on chemical-physical processes behind the diversity of nitrate simulation, all participating models are encouraged to use HTAP2 emission inventory. The simulated aerosols of nitrate and ammonium and their precursors are compared among the models and evaluated against various measurements including surface concentrations and dry/wet depositions from surface measurements, and vertical distributions from aircraft measurements.

Discussion started: 9 May 2017

© Author(s) 2017. CC-BY 3.0 License.

All models capture the main features of the distribution of nitrate and ammonium: large surface and column amounts over China, South Asia, Europe, and U.S. These regions are typically densely populated with large NH_3 and NO_x emissions. Many models also show enhanced nitrate and ammonium over the Middle East and continents over the Southern Hemisphere. The former undergoes huge dust pollution and the latter experiences fires that emit both NH_3 and NO_x .

The diversity of nitrate and ammonium simulations among the models is large: the ratio of the maximum to minimum quantities among the nine models is 13.4 and 4.4 for model simulated global mass burdens of nitrate and ammonium, respectively, and 3.9 and 5.2 for the corresponding lifetimes. These values are also larger than those of sulfate: 4.0 for global burden and 3.0 for lifetime.

 The agreement between models and observations is better for aerosol components than for gas tracers. All models underestimate NH $_3$ surface mass concentrations but most models overestimate surface HNO $_3$ concentrations over North America and East Asia. Performance of NH $_3$ is the worst: this could partially be associated to its relatively lower measurement accuracy, i.e. a loss of ammonia possibly on the filters designed to collect NH $_3$ (Williams et al., 1992). Among aerosol simulations, model performance based on evaluation of surface mixing ratio and dry/wet depositions is very similar for NH $_4^+$ and SO $_4^{2-}$, while slightly worse for NO $_3^{-}$. Models severely underestimate the aerosol concentrations with only a few exceptions when compared with aircraft measurements and this problem is worse over regions impacted by long-range transport than those closer to sources.

There are many intrinsic reasons for a larger diversity in nitrate simulations among models. Nitrate is involved in much more complicated chemistry: the chemical mechanism needs to handle a multiphase multicomponent solution system. The system sometimes cannot even be solved using the thermodynamic equilibrium approach when coarse mode dust and sea salt particles present. A reasonable nitrate simulation also depends on good simulations of various precursors, such as NH_3 , HNO_3 , dust and sea salt, although models account for impact of dust and sea salt very differently. Even an accurate simulation of SO_4^{2-} is a prerequisite because SO_4^{2-} surpasses NO_3^{-} at reacting with NH_4^{+} .

The models' intercomparison and model-observation comparison revealed at least two critical issues in nitrate simulation that demand further exploration: NH_3 wet deposition and relative contribution to NO_3^- formation via NH_3 and dust/sea salt. The nine participating models adopt very different effective Henry's law constants for NH_3 , with one group having a value equal or less than 100 (in pure water) and the other larger than 1.e+0.5 (with pH correction). Sensitivity studies using the GMI model indicated that without pH correction, NH_3 wet deposition decreases massively (from 17.5 to 1.1 Tg), which prolongs atmospheric NH_3 lifetime (from 0.67 to 5.2 days) and enhances its atmospheric burden (from 0.11 to 0.85 Tg), and thus the atmospheric burden of NH_4^+ (from 0.17 to 0.48 Tg) and NO_3^- (from 0.26 to 0.97 Tg) as well. These enhanced tracers

Discussion started: 9 May 2017

© Author(s) 2017. CC-BY 3.0 License.

781

782

783

tend to accumulate in the upper troposphere and close to the tropopause, and are too high when compared with aircraft measurements.

784 All the models use thermodynamic equilibrium to solve the chemical process of 785 NH₃/NH₄ to NO₃ formation in fine model aerosols. However, the models adopt very 786 different ways in accounting for the contribution of these reactions on the surface of dust 787 and sea salt particles: some account for both dust and sea salt, some account for only dust 788 or only sea salt, and two models even do not account for any heterogeneous reactions. 789 The methodologies that take dust and sea salt into account are also very different, i.e. 790 together with NH₄ using thermodynamic equilibrium model or simply adopting a first 791 order loss rate on dust and sea salt surfaces. The chemical budget reported by GMI and 792 INCA indicates that the majority (>80%) of global NO₃ formation is via reaction on dust 793 and sea salt. Two sensitivity experiments using the GMI model by tagging the NO₃ 794 formation from either NH₃/NH₄ chemistry or heterogeneous reactions on dust and sea

salt confirm the critical importance of the latter process, and indicate that the former process is relatively important in remote regions. The importance of NO₃ formation on dust and sea salt lies also in its determination on nitrate particle size distribution, so tha

dust and sea salt lies also in its determination on nitrate particle size distribution, so that has an implication in air quality and climate studies as well.

799 800

801

802

803

804

805

806

807

808

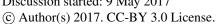
809

Our work presents a first effort to assess nitrate simulation from chemical and physical processes. A companion study is proposed by AeroCom III nitrate activity to investigate how sensitive is nitrate formation in response to the possible future changes of emission and meteorological fields. These perturbation fields include increasing NH₃ emission, decreasing NOx, SOx and dust emissions, and increasing atmospheric temperature and relative humidity. Based on the findings of this work, modelers should pay particular attention to incorporating dust and sea salt and treating NH₃ wet deposition to improve nitrate simulation. Further evaluation using satellite measurements, such as NH₃ products from IASI and TES, is desired and will be conducted. Such evaluation requires global 3-dimensional high frequency model data. Potential future study also includes estimation of nitrate forcing for climate change.

810 811 812

Appendix

For some acidic/basic gases, including NH₃, Henry's law constant is also a function of pH in water (a.k.a effective Henry's law constant). This is because not only does the aqueous chemistry reaction NH₃ + H₂O (equation 1) reach equilibrium within a chemical time step but its product NH₃·H₂O (equation 2) does as well.


$$NH_3 + H_2O \Leftrightarrow NH_3 \cdot H_2O$$

$$NH_3 \cdot H_2O \Leftrightarrow NH_4^+ + OH^-$$
(1)

Here, NH₄⁺ is the ammonium ion and OH is the hydroxide ion. The total dissolved ammonia [NH₃^T] is given by

 $[NH_{3}^{T}] = [NH_{3} \cdot H_{2}O] + [NH_{4}^{+}]$ $= p_{NH3}H^{\Theta} \left(1 + \frac{K_{al}[H^{+}]}{K_{w}}\right)$ $\approx p_{NH3} \left(H^{\Theta} \frac{K_{al}[H^{+}]}{K_{w}}\right)$ (3)

Discussion started: 9 May 2017

- Here, p_{NH3} is the partial pressure of NH_3 , $K_{al} = [NH_4^+][OH^-] / [NH_3 \bullet H_2 O] \approx 1.8 \times 10^{-5}$, and $K_w = 1.0 \times 10^{-14}$ at 298 K in pure water. So the effective Henry's law constant H^{Θ^*} is 819
- 820
- inferred from H^{Θ} with a correction of pH (pH = $-\log_{10}[H^{+}]$) as 821

$$H^{\Theta^*} = H^{\Theta} \frac{K_{al}[H^+]}{K_w} \tag{4}$$

822 823 824

825

826 827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

References:

- Allen 1, H. M., D. C. Draper 1, B. R. Ayres, A. Ault, A. Bondy, S. Takahama, R. L. Modini, K. Baumann, E. Edgerton, C. Knote, A. Laskin, B. Wang, and J. L. Fry, Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3 aerosol during the 2013 Southern Oxidant and Aerosol Study, Atmos. Chem. Phys., 15, 10669-10685, 2015, www.atmos-chemphys.net/15/10669/2015/, doi:10.5194/acp-15-10669-2015.
- Bauer, S. E., Balkanski, Y., Schulz, M., Hauglustaine, D. A., and Dentener, F.: Global modeling of heterogeneous chemistry on mineral aerosol surfaces: Influence on tropospheric ozone chemistry and comparison to observations, J. Geophys. Res.-Atmos., 109, D02304, doi:10.1029/2003jd003868, 2004.
- Bauer, S.E., and D. Koch, 2005: Impact of heterogeneous sulfate formation at mineral dust surfaces on aerosol loads and radiative forcing in the Goddard Institute for Space Studies general circulation model. J. Geophys. Res., 110, D17202, doi:10.1029/2005JD005870.
- Bauer, S. E., Koch, D., Unger, N., Metzger, S. M., Shindell, D. T., and Streets, D. G.: Nitrate aerosols today and in 2030: a global simulation including aerosols and tropospheric ozone, Atmos. Chem. Phys., 7, 5043–5059, doi:10.5194/acp-7-5043-2007, 2007.
- Bauer, S.E., D. Wright, D. Koch, E.R. Lewis, R. McGraw, L.-S. Chang, S.E. Schwartz, and R. Ruedy, 2008: MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): An aerosol microphysical module for global atmospheric models. Atmos. Chem. Phys., 8, 6603-6035, doi:10.5194/acp-8-6003-2008.
- Bauer, S. E., K. Tsigaridis, and R. Miller, Significant atmospheric aerosol pollu4on caused by world food cultivation, Geophys. Res. Lett., 43, no. 10, 5394-5400, doi:10.1002/2016GL068354, 2016.
- Bessagnet, B. and Rouïl, L.: Feedback on and analysis of the PM pollution episode in March 2014, presentation at 19-th EIONET Workshop on Air Quality Assessment and Management Berne, Switzerland, 30 September and 1 October 2014, 2014.
- Bey, I, D.J. Jacob, R.M. Yantosca, J.A. Logan, B.D. Field, A.M. Fiore, Q. Li, H.Y. Liu, L.J. Mickley, M.G. Schultz, 2001: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res., 106, 23073-23078 (2001JD000807.
- Bellouin, N., Rae, J., Jones, A., Johnson, C., Haywood, J., and Boucher, O.: Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate, J. Geophys. Res.-Atmos., 116, D20206, doi:10.1029/2011jd016074, 2011.
- Berntsen, T. K. and Isaksen, I. S. A.: A global three-dimensional chemical transport model for the troposphere.1. Model description and CO and ozone results, J. Geophys. Res.-Atmos., 102(D17), 21 239-21 280, 1997.
- Bian, H., and C. S. Zender (2003), Mineral dust and global tropospheric chemistry: The relative roles of photolysis and heterogeneous uptake. J. Geophys. Res., 108, 4672.
- Bian, H., Chin, M., Rodriguez, J. M., Yu, H., Penner, J. E., and Strahan, S., 2009: Sensitivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity, Atmos. Chem. Phys., 9, 2375-2386, doi:10.5194/acp-9-2375-2009.
- Bian, H., Colarco, P. R., Chin, M., Chen, G., Rodriguez, J. M., Liang, Q., Blake, D., Chu, D. A., da Silva, A., Darmenov, A. S., Diskin, G., Fuelberg, H. E., Huey, G., Kondo, Y., Nielsen, J. E., Pan, X., and Wisthaler, A.: Source attributions of pollution to the Western Arctic during the NASA ARCTAS field campaign, Atmos. Chem. Phys., 13, 4707-4721, doi:10.5194/acp-13-4707-2013, 2013.
- Bouwman, A.F., Lee, D.S., Asman, W.A.H., Dentener, F.J., Van Der Hoek, K.W. and J.G.J. Olivier (1997). A Global High-Resolution Emission Inventory for Ammonia, Global Biogeochemical Cycles, 11:4, 561-587. http://www.rivm.nl/.
- Chin, M., P. Ginoux, S. Kinne, B. N. Holben, B. N. Duncan, R. V. Martin, J. A. Logan, A. Higurashi, and T. Nakajima, 2002: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements, J. Atmos. Sci. 59, 461-483.

Discussion started: 9 May 2017

© Author(s) 2017. CC-BY 3.0 License.

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

- Cubison, M.J., A.M. Ortega, P.L. Hayes, D.K. Farmer, D.Day, M.J. Lechner, W.H. Brune, E. Apel, G.S. Diskin, J.A. Fisher, H.E. Fuelberg, A. Hecobian, D.J. Knapp, T. Mikoviny, D. Riemer, G.W. Sachse, W. Sessions, R.J. Weber, A.J. Weinheimer, A. Wisthaler, and J.L. Jimenez (2011), Effects of Aging on Organic Aerosol from Open Biomass Burning Smoke in Aircraft & Lab Studies. Atmos. Chem. and Phys. Disc. 11, 12103-12140, doi:10.5194/acpd-11-12103-2011.
 DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin, M.,
 - DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop, D. R., and Jimenez, J. L.: Field-deployable, highresolution, time-of-flight aerosol mass spectrometer, Anal. Chem., 78(24), 8281–8289, 2006.
 - Dentener, F. J., G. R. Carmichael, Y. Zhang, J. Lelieveld, and P. J. Crutzen, Role of mineral aerosol as a reactive surface in the global troposphere, J. Geophys. Res, 101, 22,869-22889, 1996.
 - Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P., Gong, S., Hoelzemann, J. J., Ito, A., Marelli, L., Penner, J. E., Putaud, J.-P., Textor, C., Schulz, M., van der Werf, G. R., and Wilson, J.: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom, Atmos. Chem. Phys., 6, 4321–4344, doi:10.5194/acp-6-4321-2006, 2006.
 - Ensberg, J. J., Craven, J. S., Metcalf, A. R., Allan, J. D., Angevine, W. M., Bahreini, R., Brioude, J., Cai, C., Coe, H., de Gouw, J. A., Ellis, R. A., Flynn, J. H., Haman, C. L., Hayes, P. L., Jimenez, J. L., Lefer, B. L., Middlebrook, A. M., Murphy, J. G., Neuman, J. A., Nowak, J. B., Roberts, J. M., Stutz, J., Taylor, J. W., Veres, P. R., Walker, J. M., and Seinfeld, J. H.: Inorganic and black carbon aerosols in the Los Angeles Basin during CalNex, Journal of Geophysical Research-Atmospheres, 118, 1777-1803, 2013.
 - Fairlie, T. D., Jacob, D. J., Dibb, J. E., Alexander, B., Avery, M. A., van Donkelaar, A., and Zhang, L.: Impact of mineral dust onnitrate, sulfate, and ozone in transpacific Asian pollution plumes, Atmos. Chem. Phys., 10, 3999–4012, doi:10.5194/acp-10-3999-2010, 2010.
 - Feng, Y. and Penner, J. E.: Global modeling of nitrate and ammonium: Interaction of aerosols and tropospheric chemistry, J. Geophys. Res.-Atmos., 112, D01304, doi:10.1029/2005jd006404, 2007.
 - Fenn, M. E., M. A. Poth, D. W. Johnson, Evidence for nitrogen saturation in the San Bernardino Mountains in southern California, Forest Ecology and Management, Volume 82, Issues 1–3, April 1996, Pages 211-230.
 - Fitzgerald, J. W. (1975), Approximation formulas for equilibrium size or an aerosol particle as a function of its dry size and composition and ambient relative humidity, J. Appl. Meteorol., 14(6), 1044-1049.
 - Fowler, Z. K., M. B. Adams, W. T. Peterjohn, Will more nitrogen enhance carbon storage in young forest stands in central Appalachia? Forest Ecology and Management, Volume 337, Pages 144–152, 1 February 2015.
 - Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R. and Vorosmarty, C. J.: Nitrogen cycles: Past, present, and future, Biogeochemistry, 70, 153–226, 2004.
 - Ginoux, P., M. Chin, I. Tegen, J. Prospero, B. Holben, O. Dubovik, and S.-J. Lin, 2001: Sources and global distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res., 106, 20,255-20 273.
- 911 Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, 912 Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M., 913 Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, 914 M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, 5 S., 915 Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., 916 Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, 917 S. C., Trimborn, A. M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, 918 U., and Worsnop, D. R.: Evolution of organic aerosols in the atmosphere, Science, 326, 1525–1529, 919
- Hansell, D.A., Follows, M.J., 2008. Nitrogen in the Atlantic Ocean. In: Mullholland, M., Bronk, D.,
 Capone, D., Carpenter, E. (Eds.), Nitrogen in the Marine Environment, second ed. Academic Press, pp.
 597–630.
- Hauglustaine, D. A., Hourdin, F., Walters, S., Jourdain, L., Filiberti, M.-A., Larmarque, J.-F., and Holland,
 E. A.: Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation model:
 description and background tropospheric chemistry evaluation, J. Geophys. Res., 109, D04314,
 doi:10.1029/2003JD003957, 2004.

© Author(s) 2017. CC-BY 3.0 License.

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952 953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

- Hauglustaine, D. A., Balkanski, Y., and Schulz, M.: A global model simulation of present and future
 nitrate aerosols and their direct radiative forcing of climate, Atmos. Chem. Phys., 14, 11031–11063,
 doi:10.5194/acp-14-11031-2014, 2014.
 - Haywood, J., Bush, M., Abel, S., Claxton, B., Coe, H., Crosier, J., Harrison, M., Macpherson, B., Naylor, M., and Osborne, S.: Prediction of visibility and aerosol within the operational Met Office Unified Model II?: Validation of model performance using observational data, Q. J. Roy. Meteorol. Soc., 134, 1817–1832, doi:10.1002/qj.275, 2008.
 - Heald, C. L., Collett Jr., J. L., Lee, T., Benedict, K. B., Schwandner, F. M., Li, Y., Clarisse, L., Hurtmans, D. R., Van Damme, M., Clerbaux, C., Coheur, P.-F., Philip, S., Martin, R. V., and Pye, H. O. T.: Atmospheric ammonia and particulate inorganic nitrogen over the United States, Atmos. Chem. Phys., 12, 10295–10312, doi:10.5194/acp-12-10295-2012, 2012.
 - Hess, M., P. Koepke and I. Schult, Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteorol. Soc., 79(5): 831-844, 1998.
 - Huffman, J. A., J. T. Jayne, F. Drewnick, A. C. Aiken, T. Onasch, D. R. Worsnop, and J. L. Jimenez, Design, Modeling, Optimization, and Experimental Tests of a Particle Beam Width Probe for the Aerodyne Aerosol Mass Spectrometer, Aerosol Sci Technol. 39, 1143-1163, 2005.
 - Huneeus, N., M. Schulz, Y. Balkanski, J. Griesfeller, S. Kinne, J. Prospero, S. Bauer, O. Boucher, M. Chin,
 F. Dentener, T. Diehl, R. Easter, D. Fillmore, S. Ghan, P. Ginoux, A. Grini, L. Horowitz, D. Koch,
 M.C. Krol, W. Landing, X. Liu, N. Mahowald, R.L. Miller, J.-J. Morcrette, G. Myhre, J.E. Penner, J.P.
 Perlwitz, P. Stier, T. Takemura, and C. Zender, 2011: Global dust model intercomparison in AeroCom
 phase I. Atmos. Chem. Phys., 11, 7781-7816, doi:10.5194/acp-11-7781-2011.
 - IPCC: (Intergovernmental Panel on Climate Change): The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. 2013.
 - Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M.,
 - Jacob, D. J., Crawford, J. H., Maring, H., Clarke, A. D., Dibb, J. E., Emmons, L. K., Ferrare, R. A., Hostetler, C. A., Russell, P. B., Singh, H. B., Thompson, A. M., Shaw, G. E., McCauley, E., Pederson,
 - J. R., and Fisher, J. A.: The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: design, execution, and first results, Atmos. Chem. Phys., 10, 5191– 5212, doi:10.5194/acp-10-5191-2010, 2010.
 - Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M.: HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution, Atmos. Chem. Phys., 15, 11411-11432, doi:10.5194/acp-15-11411-2015, 2015
 - Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., Gromov, S., and Kern, B.: Development cycle 2 of the Modular Earth Submodel System (MESSy2), Geosci. Model Dev., 3, 717–752, doi:10.5194/gmd-3-717-2010, 2010.
 - John, W., S. M. Wall, J. L. Ondo, and W. Winklmayr (1989), Acidic-aerosol size distributions during SCAQS (Southern California Air Quality Study), final report, Rep. CA/DOH/AIHL/SP-51, Calif. Air Resour. Board, Sacramento.
- Kanakidou, M., R.A. Duce, J.M. Prospero, A.R. Baker, C. Benitez-Nelson, F.J. Dentener, K.A. Hunter,
 P.S. Liss, N. Mahowald, G.S. Okin, M. Sarin, K. Tsigaridis, M. Uematsu, L.M. Zamora, and T. Zhu,
 2012: Atmospheric fluxes of organic N and P to the global ocean. Glob. Biogeochem. Cycles, 26,
 GB3026, doi:10.1029/2011GB004277.
- Kanakidou, M., S. Myriokefalitakis, N. Daskalakis, G. Fanourgakis, A. Nenes, A. Baker, K. Tsigaridis, and
 N. Mihalopoulos, 2016: Past, present and future atmospheric nitrogen deposition. J. Atmos. Sci., 73,
 no. 5, 2039-2047, doi:10.1175/JAS-D-15-0278.1.
- Karydis, V. A., Tsimpidi, A. P., Fountoukis, C., Nenes, A., Zavala, M., Lei, W., Molina, L. T., and Pandis,
 S. N.: Simulating the fine and coarse inorganic particulate matter concentrations in a polluted megacity, Atmospheric Environment, 44, 608-620, 2010.

Discussion started: 9 May 2017

© Author(s) 2017. CC-BY 3.0 License.

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1009

1010

1011

1012 1013

1014

1015

1016

1017

1018

1019

1020

1023

1024

- Karydis, V. A., Tsimpidi, A. P., Lei, W., Molina, L. T., and Pandis, S. N.: Formation of semivolatile inorganic aerosols in the Mexico City Metropolitan Area during the MILAGRO campaign, Atmospheric Chemistry and Physics, 11, 13305-13323, 2011.
 - Karydis, V. A., A. P. Tsimpidi, A. Pozzer, M. Astitha, and J. Lelieveld, 2016: Effects of mineral dust on global atmospheric nitrate concentrations. Atmos. Chem. Phys., 16, 1491–1509, doi:10.5194/acp-16-1491-2016.
 - Kim, Y. P., Seinfeld, J. H., and Saxena, P.: Atmospheric gas–aerosol equilibrium I. Thermodynamic model, Aerosol Sci. Technol., 19, 157–181, 1993.
 - Kim, D., M. Chin, H. Yu, T. Diehl, Q. Tan, R.A. Kahn, K. Tsigaridis, S.E. Bauer, T. Takemura, L. Pozzoli, N. Bellouin, M. Schulz, S. Peyridieu, A. Chédin, and B. Koffi, 2014: Sources, sinks, and transatlantic transport of North African dust aerosol: A multi-model analysis and comparison with remote-sensing data. *J. Geophys. Res. Atmos.*, 119, no. 10, 6259-6277, doi:10.1002/2013JD021099.
 - Kinne, S., Schulz, M., Textor, C., Guibert, S., Balkanski, Y., Bauer, S. E., Berntsen, T., Berglen, T. F.,
 Boucher, O., Chin, M., Collins, W., Dentener, F., Diehl, T., Easter, R., Feichter, J., Fillmore, D., Ghan,
 S., Ginoux, P., Gong, S., Grini, A., Hendricks, J., Herzog, M., Horowitz, L., Isaksen, I., Iversen, T.,
 Kirkevåg, A., Kloster, S., Koch, D., Kristjansson, J. E., Krol, M., Lauer, A., Lamarque, J. F., Lesins,
 G., Liu, X., Lohmann, U., Montanaro, V., Myhre, G., Penner, J., Pitari, G., Reddy, S., Seland, O.,
 Stier, P., Takemura, T., and Tie, X.: An AeroCom initial assessment optical properties in aerosol
 component modules of global models, Atmos. Chem. Phys., 6, 1815–1834, doi:10.5194/acp-6-1815-2006, 2006.
- 1001 Koch, D., M. Schulz, S. Kinne, C. McNaughton, J.R. Spackman, T.C. Bond, Y. Balkanski, S. Bauer, T. 1002 Berntsen, O. Boucher, M. Chin, A. Clarke, N. De Luca, F. Dentener, T. Diehl, O. Dubovik, R. Easter, 1003 D.W. Fahey, J. Feichter, D. Fillmore, S. Freitag, S. Ghan, P. Ginoux, S. Gong, L. Horowitz, T. Iversen, 1004 A. Kirkevåg, Z. Klimont, Y. Kondo, M. Krol, X. Liu, R.L. Miller, V. Montanaro, N. Moteki, G. 1005 Myhre, J.E. Penner, J.P. Perlwitz, G. Pitari, S. Reddy, L. Sahu, H. Sakamoto, G. Schuster, J.P. 1006 Schwarz, Ø. Seland, P. Stier, N. Takegawa, T. Takemura, C. Textor, J.A. van Aardenne, and Y. Zhao, 1007 2009: Evaluation of black carbon estimations in global aerosol models. Atmos. Chem. Phys., 9, 9001-1008 9026, doi:10.5194/acp-9-9001-2009.
 - Kinnison, D. E., P. S. Connell, J. Rodriguez, D. B. Considine, D. A. Rotman, J. Tannahill, R. Ramaroson, A. Douglass, S. Baughcum, L. Coy, P. Rasch, D. Waugh, 2001: The Global Modeling Initiative assessment model: Application to high-speed civil transport perturbation, J. Geophys. Res., 106, 1693-1712.
 - Lacis, A. A., Refractive Indices of Three Hygroscopic Aerosols and their Dependence on Relative Humidity, http://gacp.giss.nasa.gov/data_sets/lacis/introduction.pdf.
 - Lamarque, J.-F., J. T. Kiehl, G. P. Brasseur, T. Butler, P. Cameron-Smith, et al. (2005), Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition, J. of Geophys. Res., Vol. 110, D19303, doi: 10.1029/2005JD005825.
 - Lee, T., X.-Y. Yu, B. Ayres, S. M. Kreidenweis, W. C. Malm, J. L. Collett Jr., Observations of fine and coarse particle nitrate at several rural locations in the United States, Atmospheric Environment 42, 2720–2732, 2008.
- Li, J., W.-C. Wang, H. Liao, and W. Chang. 2014. Past and future direct radiative forcing of nitrate aerosol in East Asia. Theor. Appl. Climatol. 1–14. doi:10.1007/s00704-014-1249-1.
 - Liao, H., P. J. Adams, S. H. Chung, J. H. Seinfeld, L. J. Mickley, and D. J. Jacob (2003), Interactions between tropospheric chemistry and aerosols in a unified general circulation model, J. Geophys. Res., 108(D1), 4001, doi:10.1029/2001JD001260.
- Liu, X., J. E. Penner, S. J. Ghan, and M. Wang, 2007: Inclusion of Ice Microphysics in the NCAR
 Community Atmospheric Model Version 3 (CAM3). J. Climate, 20, 4526-4547.
- Liu, Y., G. Gibson, C. Cain, H. Wang, G. Grassian, and A. Laskin (2008) Kinetics of Heterogeneous
 Reaction of CaCO3Particles with Gaseous HNO3 over a Wide Range of Humidity, J. Physical
 Chemistry A, doi:10.1021/jp076169h
- Malm, W. C., Schichtel, B. A., Pitchford, M. L., Ashbaugh, L. L., and Eldred, R. A.: Spatial and monthly trends in speciated fine particle concentration in the United States, J. Geophys. Res. Atmos., 109(D3), D03306, doi:10.1029/2003/JD003739, 2004.
- Metzger, S., F. Dentener, S. Pandis, and J. Lelieveld (2002), Gas/aerosol partitioning: 1. A computationally efficient model, J. of Geophys. Res. Vol. 107, No. D16, 4312, 10.1029/2001JD001102.

1043

1044

1045

1046

1047

1048

1049

1050

 $\begin{array}{c} 1051 \\ 1052 \end{array}$

1053

1054

1055

1056

1057

1058

1059

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1079

1080

- Mezuman, K., S.E. Bauer, and K. Tsigaridis, 2016: Evaluating secondary inorganic aerosols in three dimensions. Atmos. Chem. Phys., 16, 10651-10669, doi:10.5194/acp-16-10651-2016.
- Milegroet, H. Van and D. W. Cole, The Impact of Nitrification on Soil Acidification and Cation Leaching
 in a Red Alder Ecosystem, ACSESS, Alliance of Crop, Soil, and Environmental Science Societies,
 doi:10.2134/jeq1984.00472425001300040015x, 1984
- Myhre, G., A. Grini, and S. Metzger (2006), Modeling of nitrate and ammonium-containing aerosols inpresence of sea salt, Atmos. Chem. Phys., 6, 4809-4821, www.atmos-chem-phys.net/6/4809/2006/.
 - Myhre, G., B. H., Samset, M. Schulz, Y. Balkanski, S. Bauer, T. K. Berntsen, H. Bian, N. Bellouin, M. Chin, T. Diehl, R. C. Easter, J. Feichter, S. J. Ghan, D. Hauglustaine, T. Iversen, S. Kinne, A. Kirkevåg, J.-F. Lamarque, G. Lin, X. Liu, G. Luo, X. Ma, J. E. Penner, P. J. Rasch, Ø. Seland, R. B. Skeie, P. Stier, T. Takemura, K. Tsigaridis, Z. Wang, L. Xu, H. Yu, F. Yu, J.-H. Yoon, K. Zhang, H. Zhang, and C. Zhou, Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13, 1853-1877, doi:10.5194/acp-13-1853-2013, 2013.
 - Nowak, J., J. B., Weinheimer, A. J., Hoff, R. M., Berkoff, T. A., Beyersdorf, A. J., Olson, J., Crawford, J. H., and Cohen, R. C.: On the effectiveness of nitrogen oxide reductions as a control over ammonium nitrate aerosol, Atmos. Chem. Phys., 16, 2575–2596, doi:10.5194/acp-16-2575-2016, 2016
 - Paulot, F., Ginoux, P., Cooke, W. F., Donner, L. J., Fan, S., Lin, M.-Y., Mao, J., Naik, V., and Horowitz, L. W.: Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth, Atmos. Chem. Phys., 16, 1459–1477, doi:10.5194/acp-16-1459-2016, http://www.atmos-chem-phys.net/16/1459/2016/, 2016.
 - Phoenix, G., W. K. Hicks, S. Cinderby, J. C. I. Kuylenstierna, W. D. Stock, et al. (2006), Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts, Global Change Biology, 12, 470-476, doi: 10.1111/j.1365-2486.2006.01104.x.
- 1060 Prentice, M. J., et al. (2001), The carbon cycle and atmospheric carbon dioxide, in Climate Change 2001,
 1061 pp. 184-237, Cambridge Univ. Press, New York.
 - Pringle, K. J., Tost, H., Message, S., Steil, B., Giannadaki, D., Nenes, A., Fountoukis, C., Stier, P., Vignati, E., and Leieved, J.: Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1), Geoscientific Model Development, 3, 391-412, 2010.
 - Pusede, S. E., Duffey, K. C., Shusterman, A. A., Saleh, A., Laughner, J. L., Wooldridge, P. J., Zhang, Q., Parworth, C. L., Kim, H., Capps, S. L., Valin, L. C., Cappa, C. D., Fried, A., Walega, Riemer, N., H. Vogel, B. Vogel, B. Schell, I. Ackermann, C. Kessler, and H. Hass (2003), Impact of the heterogeneous hydrolysis of N2O5 on chemistry and nitrate aerosol formation in the lower troposphere under photosmog conditions, J. Geophys. Res., 108(D4), 4144, doi:10.1029/2002JD002436.
 - Sander, S. P., J. Abbatt, J. R. Barker, J. B. Burkholder, R. R. Friedl, D. M. Golden, R. E. Huie, C. E. Kolb, M. J. Kurylo, G. K. Moortgat, V. L. Orkin and P. H. Wine "Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17," JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, 2011 http://jpldataeval.jpl.nasa.gov.
- Saxena, P., Hudischeyskyj, A. B., Seigneur, C., and Seinfeld, J. H., A comparative study of
 equilibrium approaches to the chemical characterization of secondary aerosols, Atmos. Enuiron.
 20:1471- 1483, 1986.
- 1077 Schaap, M., Müller, K., & Ten Brink, H. M. (2002). Constructing the European aerosol nitrate concentration field from quality analysed data. Atmospheric Environment, 36(8), 1323-1335.
 - Schaap, M., van Loon, M., ten Brink, H. M., Dentener, F. J., and Builtjes, P. J. H.: Secondary inorganic aerosol simulations for Europe with special attention to nitrate, Atmos. Chem. Phys., 4, 857-874, doi:10.5194/acp-4-857-2004, 2004.
- Schmidt, G.A., M. Kelley, L. Nazarenko, R. Ruedy, G.L. Russell, I. Aleinov, M. Bauer, S.E. Bauer, M.K. Bhat, R. Bleck, V. Canuto, Y.-H. Chen, Y. Cheng, T.L. Clune, A. Del Genio, R. de Fainchtein, G. Faluvegi, J.E. Hansen, R.J. Healy, N.Y. Kiang, D. Koch, A.A. Lacis, A.N. LeGrande, J. Lerner, K.K. Lo, E.E. Matthews, S. Menon, R.L. Miller, V. Oinas, A.O. Oloso, J.P. Perlwitz, M.J. Puma, W.M. Putman, D. Rind, A. Romanou, M. Sato, D.T. Shindell, S. Sun, R.A. Syed, N. Tausnev, K. Tsigaridis, N. Unger, A. Voulgarakis, M.-S. Yao, and J. Zhang, 2014: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv.
- 1089 Model. Earth Syst., 6, no. 1, 141-184, doi:10.1002/2013MS000265.

© Author(s) 2017. CC-BY 3.0 License.

1111

1112

1116

1117

1118

1119

1120

1121

1122

- Schulz, M., Textor, C., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher, O.,
 Dentener, F., Guibert, S., Isaksen, I. S. A., Iversen, T., Koch, D., Kirkevåg, A., Liu, X.,
 Montanaro, V., Myhre, G., Penner, J. E., Pitari, G., Reddy, S., Seland, Ø., Stier, P., and
 Takemura, T.: Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations, Atmos. Chem. Phys., 6, 5225–5246, doi:10.5194/acp-6-5225-2006, 2006.
- Schutgens, N. A. J., Gryspeerdt, E., Weigum, N., Tsyro, S., Goto, D., Schulz, M. and Stier, P.: Will a
 perfect model agree with perfect observations? The impact of spatial sampling, Atmos. Chem.
 Phys., 16(10), 6335-6353, 2016.
- 1098 Shindell, D. T., Faluvegi, G., and Bell, N.: Preindustrial-to-present-day radiative forcing by
 1099 tropospheric ozone from improved simulations with the GISS chemistry-climate GCM, Atmos.
 1100 Chem. Phys., 3, 1675–1702, 2003.
- Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D., Fagerli, H., Flechard, C. R.,
 Hayman, G. D., Gauss, M., Jonson, J. E., Jenkin, M. E., Nyíri, A., Richter, C., Semeena, V. S., Tsyro,
 S., Tuovinen, J. P., Valdebenito, Á., and Wind, P.: The EMEP MSC-W chemical transport model technical description, Atmos. Chem. Phys., 12, 7825-7865, 10.5194/acp-12-7825-2012, 2012.
- 1105 Song, C. H., and G. R. Carmichael, Gas-particle partitioning of nitric acid modulated by alkaline aerosol, J. 1106 Atmos. Chem., 40, 1–22, 2001.
- Strahan, S. E., Duncan, B. N., and Hoor, P.: Observationally derived transport diagnostics for the lowermost stratosphere and their application to the GMI chemistry and transport model, Atmos. Chem. Phys., 7, 2435-2445, doi:10.5194/acp-7-2435-2007, 2007.
 Sudo, K., M. Takahashi, J. Kurokawa, and H. Akimoto, CHASER: A global chemical model of the
 - Sudo, K., M. Takahashi, J. Kurokawa, and H. Akimoto, CHASER: A global chemical model of the troposphere, 1. Model description, J. Geophys. Res., 107(D17), 4339, doi:10.1029/2001JD001113, 2002.
- Takiguchi, Y., A. Takami, Y. Sadanaga, X. Lun, A. Shimizu, I. Matsui, N. Sugimoto, W. Wang, H.
 Bandow, and S. Hatakeyama (2008), Transport and transformation of total reactive nitrogen over the
 East China Sea, J. Geophys. Res., 113, D10306, doi:10.1029/2007JD009462.
 - Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher, O., Chin, M., Dentener, F., Diehl, T., Easter, R., Feichter, H., Fillmore, D., Ghan, S., Ginoux, P., Gong, S., Grini, A., Hendricks, J., Horowitz, L., Huang, P., Isaksen, I., Iversen, I., Kloster, S., Koch, D., Kirkevåg, A., Kristjansson, J. E., Krol, M., Lauer, A., Lamarque, J. F., Liu, X., Montanaro, V., Myhre, G., Penner, J., Pitari, G., Reddy, S., Seland, Ø., Stier, P., Takemura, T., and Tie, X.: Analysis and quantification of the diversities of aerosol life cycles within AeroCom, Atmos. Chem. Phys., 6, 1777–1813, doi:10.5194/acp-6-1777-2006, 2006.
- Tost, H., Jöckel, P., Kerkweg, A., Sander, R., and Lelieveld, J.: Technical note: A new comprehensive
 SCAVenging submodel for global atmospheric chemistry modelling, Atmos. Chem. Phys., 6, 565-574,
 doi:10.5194/acp-6-565-2006, 2006.
- Trail, M., Tsimpidi, A. P., Liu, P., Tsigaridis, K., Rudokas, J., Miller, P., Nenes, A., Hu, Y., and Russell, A.
 G.: Sensitivity of air quality to potential future climate change and emissions in the United States and major cities, Atmospheric Environment, 94, 552-563, 2014.
- Trump, E. R., Fountoukis, C., Donahue, N. M., and Pandis, S. N.: Improvement of simulation of fine inorganic PM levels through better descriptions of coarse particle chemistry, Atmospheric Environment, 102, 274-281, 2015.
- Tsigaridis, K., Daskalakis, N., Kanakidou, M., Adams, P. J., Artaxo, P., Bahadur, R., Balkanski, Y.,
 Bauer, S. E., Bellouin, N., Benedetti, A., Bergman, T., Berntsen, T. K., Beukes, J. P., Bian, H.,
- 1134 Carslaw, K. S., Chin, M., Curci, G., Diehl, T., Easter, R. C., Ghan, S. J., Gong, S. L., Hodzic, A., Hoyle, C. R., Iversen, T., Jathar, S., Jimenez, J. L., Kaiser, J. W., Kirkevåg, A., Koch, D., Kokkola, H.,
- Lee, Y. H, Lin, G., Liu, X., Luo, G., Ma, X., Mann, G. W., Mihalopoulos, N., Morcrette, J.-J.,
- Müller, J.-F., Myhre, G., Myriokefalitakis, S., Ng, N. L., O'Donnell, D., Penner, J. E., Pozzoli, L.,
 Pringle, K. J., Russell, L. M., Schulz, M., Sciare, J., Seland, Ø., Shindell, D. T., Sillman, S.,
- Skeie, R. B., Spracklen, D., Stavrakou, T., Steenrod, S. D., Takemura, T., Tiitta, P., Tilmes, S.,
- Tost, H., van Noije, T., van Zyl, P. G., von Salzen, K., Yu, F., Wang, Z., Wang, Z., Zaveri, R. A., Zhang, H., Zhang, K., Zhang, Q., and Zhang, X.: The AeroCom evaluation and intercomparison of
- organic aerosol in global models, Atmos. Chem. Phys., 14, 10845-10895, doi:10.5194/acp-14-10845-

1143 2014, 2014.

© Author(s) 2017. CC-BY 3.0 License.

Tsimpidi, A. P., Karydis, V. A., and Pandis, S. N.: Response of inorganic fine particulate matter to emission changes of sulfur dioxide and ammonia: The eastern United States as a case study, Journal of the Air & Waste Management Association, 57, 1489-1498, 2007. Tsimpidi, A. P., Karydis, V. A., and Pandis, S. N.: Response of Fine Particulate Matter to Emission Changes of Oxides of Nitrogen and-Anthropogenic Volatile Organic Compounds in the Eastern United States, Journal of the Air & Waste Management Association, 58, 1463-1473, 2008. Vieno, M., Heal, M. R., Twigg, M. M., MacKenzie, I. A., Braban, C. F., Lingard, J. J. N. Ritchie, S., Beck, R. C., A., M., Ots, R., DiMarco, C. F., Nemitz, E., Sutton, M. A., and Reis, S.: The UK particulate matter air pollution episode of March-April 2014: more than Saharan dust., Environ. Res. Lett., doi:10.1088/1748-9326/11/4/044004, 2016. Walker, J. M., Philip, S., Martin, R. V., and Seinfeld, J. H.: Simulation of nitrate, sulfate, and ammonium aerosols over the United States, Atmos. Chem. Phys., 12, 11213-11227, doi:10.5194/acp-12-11213-Watanabe, S., T. Hajima, K. Sudo, T. Nagashima, T. Takemura, H. Okajima, et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4 (2011), pp. Williams, E. J., S. T. Sandholm, J. D. Bradshaw, J. S. Schendel, A. O. Langford, P. K. Quinn, P. J. LeBel, S. A. Vay, P. D. Roberts, R. B. Norton, B. A. Watkins, M. P. Buhr, D. D. Parrish, J. G. Calvert, and F. C. Fehsenfeld, An intercomparison of five ammonia measurement techniques, J. Geophys. Res., Vol., 97, No. D11, Pages 11591-11611, July 20, 1992. van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009), Atmos. Chem. Phys., 10, 11707-11735, doi:10.5194/acp-10-11707-2010, 2010. Zender, C. S., Bian, H. S., and Newman, D.: Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology, J. Geophys. Res.-Atmos., 108, 4416, doi:10.1029/2002jd002775, 2003. Zhou, J., B. Gu, W. H. Schlesinger, X. Ju, Significant accumulation of nitrate in Chinese semi-humid croplands, Scientific Reports 6, Article number: 25088, doi:10.1038/srep25088, 2016.

© Author(s) 2017. CC-BY 3.0 License.

Table 1. Nitrate chemical mechanism and physical properties of AeroCom models

Model	снем-еом	HNO3 chem mechanism	CHEM DUST	CHEM SEASALT	How do CHEMDUSS	Bins for nitrate	Model Name & resolution	References
CHASER	ISORROPIA-I	CHASER (Sudo et al., 2002)	No	No		Fine mode	MIROC, GCM, 2.8°x2.8°x64	Watanabe et al., 2011
EMAC	ISORROPIA-II (Stable state ^a)	MESSy2 (Jöckel et al., 2010)	Yes	Yes	ISORROPIA-II	4 bins: Nucleation, Aitken, Accumulation, Coarse	ECHAM5, GCM, 2.8°x2.8°x31	Karydis et al., 2016
ЕМЕР	MARS	EMEP EmChem09 (Simpson et al., 2012)	Yes	Yes	First order loss	Fine and coarse	ECMWF-IFS, CTM, 0.5x0.5°x20	Simpson et al., 2012
GMI	RPMARES (Stable state)	GMI (Straham et al., 2007)	Yes	Yes	first order loss	3 bins: (D<0.1, 0.1 - 2.5, > 2.5 um)	MERRA2, CTM, 2.5°x2°x72	Bian et al., 2009
INCA	INCA (Stable state)	INCA tropospheric chemistry (Hauglustaine et al., 2004)	Yes	Yes	first order loss	2 bins: (D< 1μm and 1 - 10μm)	LMD-v4, GCM, 1.9°x3.75°x39	Hauglustain e et al., 2014
GISS MATRIX	ISORROPIA-II (Stable state)	MATRIX Bauer (2008) and tropospheric chemistry (Shindell et al., 2003)	No	No	NO	Distributed over all mixing states e.g. size distributions.	NASA GISS- E2, GCM, 2°x2.5°x40	Schmidt et al 2014
GISS OMA	EQSAM_v03d (Metastable ^b)	OMA (Bauer 2007) and tropospheric chemistry (Shindell et al., 2003)	Yes	No	Bauer and Koch, 2005	Fine mode	NASA GISS- E2, GCM, 2°x2.5°x40	Schmidt et al 2014
Oslo CTM2	EQSAM_v03d (Metastable)	Oslo CTM2 (Berntsen and Isaksen, 1997)	No	Yes	EQSAM_v03d	2 bins: fine and coarse mode	ECMWF, CTM, 2.8°x2.8°x60	Myhre et al., 2006
Oslo CTM3	EQSAM_v03d (Metastable)	Oslo CTM2 (Berntsen and Isaksen, 1997)	No	Yes	EQSAM_v03d	2 bins: fine and coarse mode	ECMWF, CTM, 2.25°x2.25°x6 0	Myhre et al., 2006

1196 aStable state: where salts precipitate once the aqueous phase becomes saturated

1197 bMetastable: where the aerosol is composed only of a supersaturated aqueous phase 1198

1199 Table 2. Characteristics of thermodynamic equilibrium models

	ISORROPIA-I	ISORROPIA-II	MARS	RPMARES	INCA	EQSAM_v03d
Species	Sulfate, nitrate, ammonium, sodium, chloride	Sulfate, nitrate, ammonium, sodium, chloride, crustal species	Sulfate, nitrate, ammonium	Sulfate, nitrate, ammonium	Sulfate, nitrate, ammonium	Sulfate, nitrate, ammonium, sodium, chloride
# of components	23	34	16	11	9	18
# of reactions	15	27	7	6	4	25
Multicomponent activity coefficient	Bromley	Bromley	Bromley	Bromley	Seinfeld and Pandis	Metzger
Binary activity coefficient	Kusik and Meissner	Kusik and Meissner	Pitzer	Pitzer	Seinfeld and Pandis	Metzger
Water activity	ZSR ^a	ZSR	ZSR	ZSR		ZSR
Kelvin effect	No	No	No	No	No	No
Quantities that determine subdomains	[Na ⁺], [NH ₄ ⁺], [SO ₄ ²⁻]	[Ca ²⁺], [K ⁺], [Mg ²⁺], [Na ⁺], [NH ₄ ⁺], [SO ₄ ²⁻]	RH, [NH ₄ ⁺], [SO ₄ ²⁻]	[NH ₄ ⁺], [SO ₄ ²⁻]	[NH ₄ ⁺], [SO ₄ ²⁻]	[NH ₄ ⁺], [SO ₄ ²⁻]
# of subdomains	4	5	4	2	3	3

Discussion started: 9 May 2017

© Author(s) 2017. CC-BY 3.0 License.

1200 ^aZSR: Zdanovskii-Stokes-Robinson

1201 1202

Table 3. Summary of the observational data used in this study

SURFACE NETWORK	QUANTITY	COVER AREA	# of sites in 2008	SAMPLE FREQUENCE	SOURCE
CASTNET	Concentration of HNO ₃ , NO ₃ , NH ₄ , SO ₄ ² Dry deposition of them	North America	83	weekly	www.epa.gov/castnet/ clearsession.do
AMoN	Concentration of NH ₃	U.S.	19	2-weekly	http://nadp.isws.illino is.edu/
NADP/NTN	Wet deposition of HNO ₃ +NO ₃ , NH ₄ , SO ₄ ²⁻	U.S.	253	weekly	nadp.isws.illinois.edu
EMEP	Concentration of HNO ₃ , NH ₃ , NO ₃ , NH ₄ , SO ₄ ²	Europe	35	daily	http://www.nilu.no/pr ojects/ccc/index.html
EANET	Concentration of HNO ₃ , NH ₃ , NO ₃ , NH ₄ ⁺ , SO ₄ ²	East Asia	56	Daily to 2-weekly	http://www.eanet.asia /eanet/brief.html
	Wet deposition of HNO ₃ +NO ₃ , NH ₄ , SO ₄ ²			24 hours or precipitation event	
AIRCRAFT CAMPAIGNS	QUANTITY	COVER AREA	# of Flights	CAMPAIGN PERIOD	SOURCE
ARCTAS-A	Concentration of NO ₃ ,	Alaska, U.S.	11	March-April	http://www-
ARCTAS- CARB	NH ₄ ⁺ , SO ₄ ²⁻	California Bay area U.S.	6	June	air.larc.nasa.gov/cgi- bin/arcstat-c
ARCTAS-B	1	Central Canada	7	July	

1203 1204 1205

Table 4a. NO₃ global budget for each model

Tracer	Model	Burden (Tg)	SConc (µg kg·1)	DDep (Tg a·¹)	WDep (Tg a ⁻¹)	ChemDUSS ^a (Tg a ⁻¹)	ChemP ^a (Tg a ⁻¹)	Lifetime (days)	AOD ^b
NO ₃	CHASER	0.16	0.18	-	-	-	-	-	0.0076
	EMAC	0.67	0.47	46.3	-	-		-	-
	EMEP	0.96	0.30	15.0	62.7	(71.7	') ^c	4.5	0.0073
	GISS- MATRIX	0.22	0.06	1.3	9.6	(10.9	9)	7.4	-
	GISS- OMA	0.14	0.05	1.1	5.5	(6.6)	7.8	0.0153
	GMI	0.26	0.22	14.9	31.5	41.9	4.8	2.1	0.0047
	INCA	0.79	0.17	4.5	44.6	44.1	9.8	5.9	0.0064
	Oslo- CTM2	0.60	0.25	47.8	61.5	(109	.3)	2.0	0.0018
	Oslo- CTM3	1.88	0.36	34.6	90.6	(125	.2)	5.5	-
	Avg	0.63	0.23	20.7	45.9	60.0	5	5.0	0.0072
	Med	0.60	0.22	15.0	44.6	46.	7	5.5	0.0064
	Ratiod	13.4	9.4	43.5	16.5	19.0)	3.9	8.5

a: ChemDUSS and ChemP refer to NO₃ chemical production associated with dust/sea 1206 salt and NH₃/NH₄, respectively

 $^{\mathrm{b}}$: AOD here includes NH $_{4}^{+}$ that is associated to NO $_{3}^{-}$ for all models expect EMEP

 $^{\rm c}$: value inside parenthesis is estimated total NO_3^- chemical production based on its total loss, while budget without parenthesis is reported directly by model.

d: a ratio between maximum to minimum model simulations

1211 1212

1207

1208

1209

1210

© Author(s) 2017. CC-BY 3.0 License.

1214 Table 4b NH₃ and NH₄ global budget for each model

Tracer	Model	Emi	Burden	SConc	DDep	WDep	ChemP/L	Lifetime	AOD
		(Tg a-1)	(Tg)	(μg kg·1)	(Tg a-1)	(Tg a ⁻¹)	(Tg a-1)	(days)	
NH ₄ +	CHASER		0.75	0.44	20.9	7.2	(28.1)a	9.8	-
	EMAC		0.19	0.12	3.6	44.5b	-	-	-
	EMEP		0.20	0.15	4.0	26.4	(30.4)	2.4	0.0059
	GISS-		0.31	0.18	4.1	27.9	(32.0)	3.5	-
	MATRIX								
	GISS-OMA		0.31	0.19	4.2	24.0	(28.2)	4.0	-
	GMI		0.17	0.14	1.7	30.6	32.2	1.9	-
	INCA		0.39	0.08	2.4	20.4	22.9	6.3	-
	Oslo-CTM2		0.29	0.14	5.3	32.6	(37.9)	2.8	-
	Oslo-CTM3		0.30	0.16	5.6	26.1	(31.7)	3.5	-
	Avg		0.32	0.18	5.8	24.4c	30.4	4.3	
	Med		0.30	0.15	4.1	26.3c	31.1	3.5	
	Ratio		4.4	5.5	12.3	4.5c	1.7	5.2	
NH ₃	CHASER	62.8	0.13	0.46	19.8	6.8	(36.2)a	0.76	
	EMAC	59.3	0.85	1.39	15.5	-	-	-	
	EMEP	56.9	0.09	0.46	15.4	18.2	(33.6)	0.98	
	GISS-	63.4d	0.17	0.26	18.1	13.4	(31.9)	0.98	
	MATRIX								
	GISS-OMA	63.4 ^d	0.17	0.25	18.4	16.7	(28.3)	0.98	
	GMI	60.4	0.11	0.40	12.6	17.5	30.4	0.67	
	INCA	70.5d	0.12	0.39	29.3	18.6	22.4	0.62	
	Oslo-CTM2	65.9	0.08	0.27	15.8	8.1	(42.0)	0.44	
	Oslo-CTM3	63.3	0.05	0.51	23.7	7.7	(31.9)	0.29	
	Avg	62.9	0.20	0.49	18.7	13.4	32.1	0.72	
	Med	63.3	0.12	0.40	18.1	15.1	31.9	0.72	
	Ratio	1.2	17.0	5.6	2.3	2.7	1.9	3.4	

a chemical budgets inside parenthesis are inferred based on the reported emission
 and total deposition

1217 b EMAC gives total wet deposition of NH $_{4}^{+}$ and NH $_{3}$

1218 ^c Statistic values of NH₄ wet deposition do not include EMAC

1219 d INCA uses ECLIPSE anthropogenic emissions, two GISS models use CMIP5

anthropogenic emission, and all other models use HTAPv2 anthropogenic emissions

1221 1222

Table 4c. HNO₃ global budget for each model

Tracer	Model	Burdena (Tg)	SConc (µg kg ⁻¹)	DDep (Tg a·¹)	WDep (Tg a¹¹)	CheAP (Tg a ⁻¹)	CheGP (Tg a¹¹)	CheAL (Tg a ⁻¹)	CheGL (Tg a ⁻¹)	Lifetime (days)
HNO ₃	CHASER	1.1	0.29	74.0a	120.9b	-	-	-	-	-
	EMAC	3.1	0.32	56.1	136.0 ^b	-	-	-	-	-
	EMEP	0.66	0.04	39.2	123.9	-	-	-	-	-
	GISS- MATRIX	5.7	0.12	61.7	167.5	-	-	-	-	-
	GISS- OMA	5.3	0.10	49.8	148.2	-	-	-	-	-
	GMI	1.8	0.18	39.7	128.1	128.1	413	42.6	299	3.5
	INCA	1.5	0.09	47.7	77.5	21	369	10.0	210	5.7
	Oslo- CTM2	1.3	0.05	36.1	66.0					
	Oslo- CTM3	2.3	0.04	36.0	49.3	-	-	-	-	-
	Avg	2.5	0.14	45.8 ^b	108.7c					
	Med	1.8	0.10	43.7b	123.9c					

Discussion started: 9 May 2017

© Author(s) 2017. CC-BY 3.0 License.

1223	^a HNO3 burden for the atmosphere up to 100 hPa

8.6

1224 bfor both HNO₃ and NO₃

Ratio

1225 cstatistical values do not include CHASER and EMAC that report total dry or wet

1.6^b

1226 deposition of HNO_3 and NO_3^-

12271228

Table 4d. SO₄²⁻ global budget for each model

Trac er	Model	Emi SO2 (Tg a ⁻¹)	Emi SO4 (Tg a ⁻¹)	Burden (Tg)	SConc (µg kg [.] ¹)	DDep (Tg a-1)	WDep (Tg a ⁻¹)	Chem Chem GP AqP (Tg a-1) (Tg a-1)	Lifetime (days)	AOD
SO ₄ ²⁻	CHASER	111	0	3.3	1.44	22.1	137	(159)	7.6	0.0826
	EMAC	138	619a	1.9	1.72	504b	302	(187)	0.86	-
	EMEP	109	0	0.83	0.45	10.2	109	(119)	2.5	0.0232
	GISS- MATRIX	133	5.1	1.3	0.63	16.6	97	(109)	4.2	-
	GISS- OMA	133	5.1	1.1	0.53	11.8	112	52.7 66.2	3.3	0.0714
	GMI	111	0	1.1	0.58	7.5	205	126.5 86.1	3.6	0.0257
	INCA	116.	8.0	1.8	0.34	8.4	116	42.2 75.1	5.3	0.0417
	Oslo- CTM2	133	4.1	2.0	0.49	17.6	184	(198)	3.6	0.0366
	Oslo- CTM3	133	4.1	2.7	0.55	20.2	160	(176)	5.5	
	Avgc	122		1.8	0.63	14.3	140	151	4.5	0.0469
	Medc	133	•	1.6	0.54	14.2	127	139	3.9	0.0392
	Ratioc	1.2		4.0	4.2	2.9	2.1	2.0	3.0	3.6

1229 a EMAC emission also includes sea spray SO₄²⁻

 $^{\rm b}\,\text{EMAC}$ dry deposition includes sedimentation and SO_4^{2-} sedimentation is very high

since it has assumed that 7.7% of sea salt is SO_4^{2-}

1232 ^c Statistical values do not include EMAC

1233 1234

Table 5: Effective Henry Law constant used in the models

Aerocom	H ^{⊖*} (M/atm)	$-\Delta H_{sol}/R$ (K)
Model		
CHASER	3.0e+5	3400
EMAC ^a	-	=
EMEP ^b	-	-
GIS MATRIX	1.e+2	3415
GISS OMA	1.e+2	3415
GMI	1.05e6	4200
INCA	7.4e+1	3400
Oslo-CTM2	3.3e+6	0
Oslo-CTM3	3.3e+6	0

^aEMAC: See its wet deposition description in section 4.1.1.

^bEMEP: The model does not use Henry law but applies simple empirical scavenging ratio, which for NH₃ is 1.4e6 for in-cloud and 0.5e6 for below-cloud scavenging. The scavenging ratio by definition is the ratio the concentration of a certain pollutant in precipitation divided by the concentration of the pollutant in air.

12391240

1235

1236

1237

1238

1241

Table 6. Baseline and three sensitivity experiments in the GMI model

Tubic of Be	iseline and three sensitivity experimen	to in the drift model		
Experiment	Setup	Purpose		
BASE	Standard simulation as described in section 2.1	Baseline simulation		
TWET	Set NH ₃ effective Henry law constant from	Review impact of NH ₃ wet		
	1.05e+6 (pH= 5.0) to 62 (pure water)	deposition		
TnoNH3	Turn off NO ₃ production from NH ₃ /NH ₄ ⁺	Identify how large/where the NO ₃		
		formation from NH ₃ /NH ₄ ⁺		
TnoHET	Turn off NO ₃ production from dust and sea salt	Identify how large/where the NO ₃		
		formation from dust and sea salt		

Table 7: NO_3^- , NH_4^+ , NH_3 and HNO_3 budgets from the base simulation and three

sensitivity experiments

Tracer	Exps	Burden (Tg)	SConc (µg kg-1)	DDep (Tg a·1)	WDep (Tg a¹¹)	ChemDUSS (Tg a ⁻¹)	ChemP(Tg a ⁻¹)	Lifetime (days)
NO ₃	BASE	0.26	0.22	14.9	31.5	41.9	4.8	2.1
	Twet	0.97	0.23	14.8	43.3	41.0	18.3	6.0
	TnoNH3	0.20	0.17	14.7	27.5	42.3	0	1.7
	TnoHET	0.099	0.065	0.61	6.70	0	7.1	5.0

Tracer	Model	Emi (Tg a ⁻¹)	Burden (Tg)	SConc (μg kg ⁻¹)	DDep (Tg a ^{.1})	WDep (Tg a ⁻¹)	ChemP/L (Tg a·¹)	Lifetime (days)
NH ₄ ⁺	BASE		0.17	0.14	1.7	30.6	32.2	1.9
	Twet		0.48	0.16	1.9	50.7	53.0	3.4
	TnoNH3		-	-	-	-	-	-
	TnoHET		0.17	0.14	1.6	30.6	32.2	1.9
NH ₃	BASE	60.4	0.11	0.40	12.6	17.5	30.4	0.67
	Twet		0.85	0.81	8.70	1.1	50.1	5.2
	TnoNH3		0.32	0.58	20.9	39.3	0	1.9
	TnoHET		0.10	0.40	12.6	17.4	30.4	1.2

© Author(s) 2017. CC-BY 3.0 License.

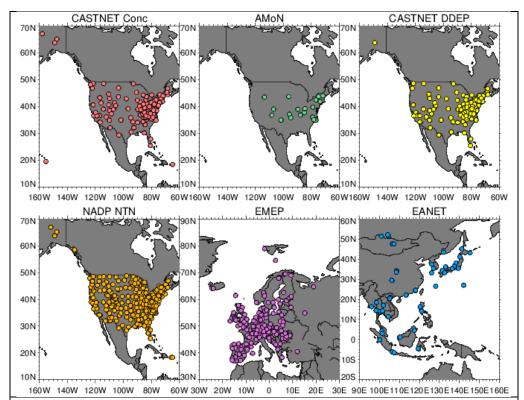


Figure 1. The observational station locations for CASTNET surface concentrations (CASTNET Conc), Ammonia surface monitor network over U.S. (AMON), CASTNET dry deposition (CASTNET DDEP); National Acid Deposition Network for wet deposition over U.S. (NADP NTN), surface concentrations over Europe (EMEP), and surface dry and wet deposition over Asia (EANET).

125212531254

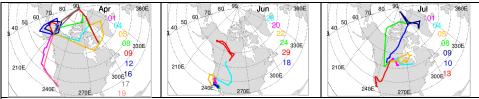


Figure 2. Flight-tracks of ARTCTA-A (left), ARCTAS-CARB (middle), and ARCTAS-B (right). The colors represent observations during different days.

Atmospheric Chemistry and Physics

Discussions

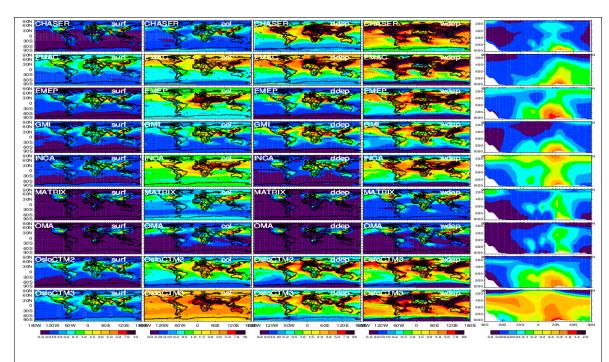


Figure 3a. Multimodel comparison of NO_3^- for surface mass mixing ratio (µg kg⁻¹, left), column load (mg m⁻², second), dry deposition (ng m⁻² s⁻¹, third), wet deposition (ng m⁻² s⁻¹, fourth), and vertical zonal mean (0.5µg kg⁻¹, right). Note that the CHASER dry and wet depositions and the EMAC wet deposition in this figure contain both NO_3^- and HNO_3 , while the rest models NO_3^- .

© Author(s) 2017. CC-BY 3.0 License.

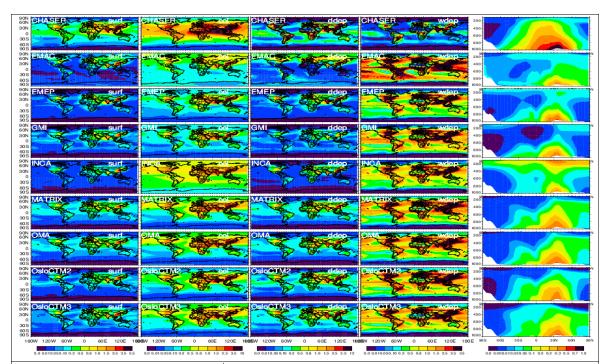


Figure 3b. Same as Figure 3a but for NH_4^+ and the unit in vertical distribution is $\mu g \ kg^{-1}$. Note that the EMAC wet deposition in this figure contain both NH_4^+ and NH_3 , while the rest models only NH_4^+ .

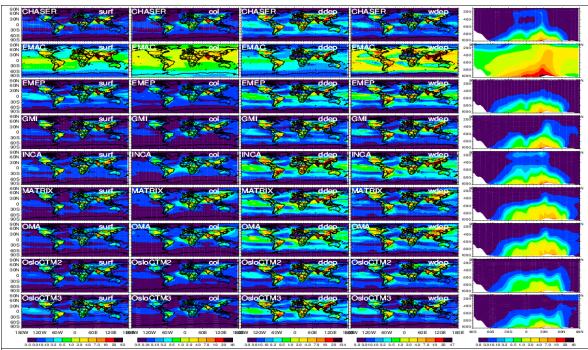


Figure 3c. Same as Figure 3a but for NH_3 . Units are ppb for surface concentration and 0.1ppb for vertical distribution. Note that the EMAC wet deposition in this figure contain both NH_3 and NH_4^+ , while the rest models only NH_3 .

© Author(s) 2017. CC-BY 3.0 License.

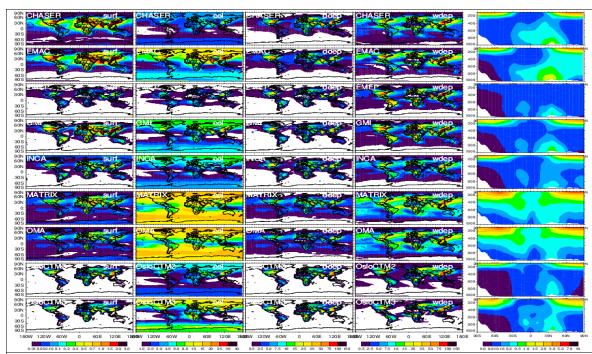


Figure 3d. Same as Figure 3a but for HNO_3 . Units are 100 ppb for surface concentration, $mg\ m^{-2}$ for loading, and $2ng\ m^{-2}\ s^{-1}$ for dry and wet depositions. Note that the column total of HNO_3 is from surface up to 100 ppb vertically. The CHASER dry and wet depositions and the EMAC wet deposition in this figure contain both HNO_3 and NO_3^- , while the rest models only HNO_3 .

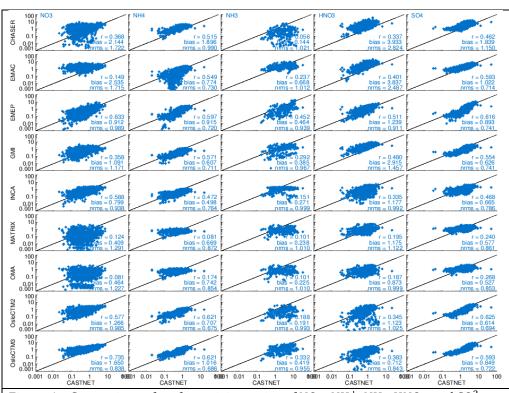
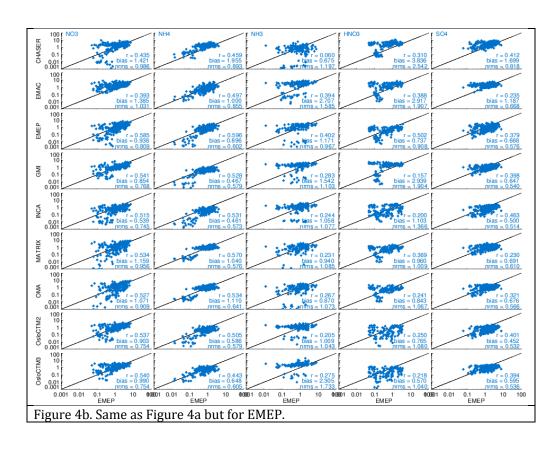
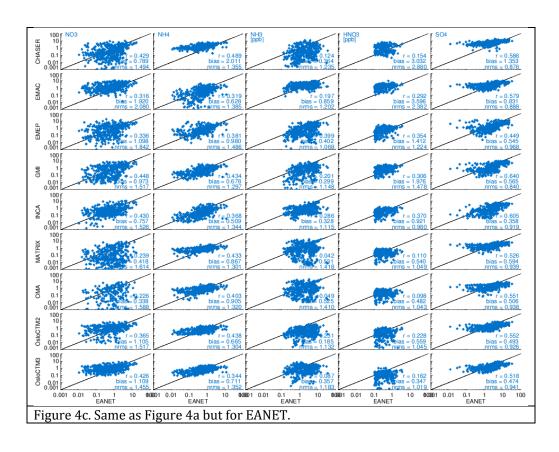



Figure 4a. Comparison of surface mixing ratios of NO_3^- , NH_4^+ , NH_3 , HNO_3 , and SO_4^{2-} between models and CASTNET measurement. Units are $\mu g m^{-3}$.



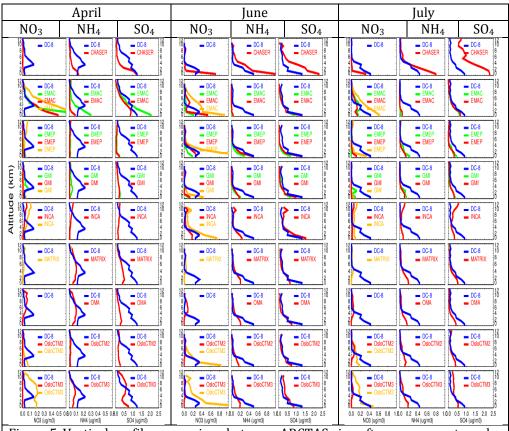
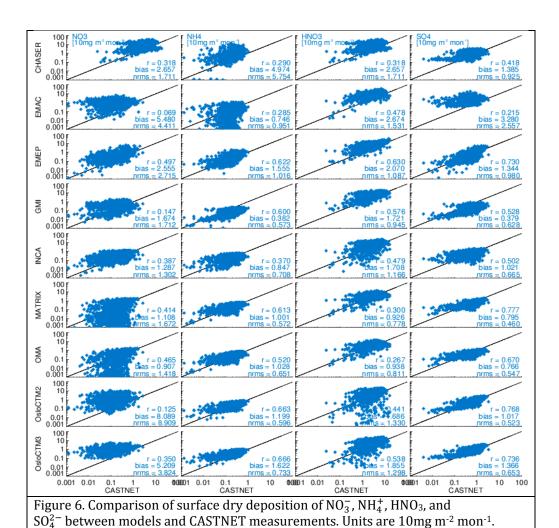



Figure 5. Vertical profile comparison between ARCTAS aircraft measurements and AeroCom model simulations. Note that ARCTAS AMS measurements give fine mode aerosols. Model profiles are shown in green (fine mode aerosol analyzed with daily output), red (fine mode aerosol with monthly output), and orange (total NO_3^- with monthly output). CHASER and OMA have fine mode NO_3^- only. Units are $\mu g m^{-3}$.

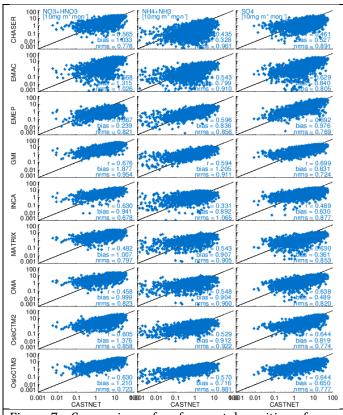


Figure 7a. Comparison of surface wet deposition of NO₃⁻+HNO₃, NH₄⁺+NH₃, and SO₄²⁻ between models and NDAP/NTN measurements. Units are 10mg m⁻² mon⁻¹.

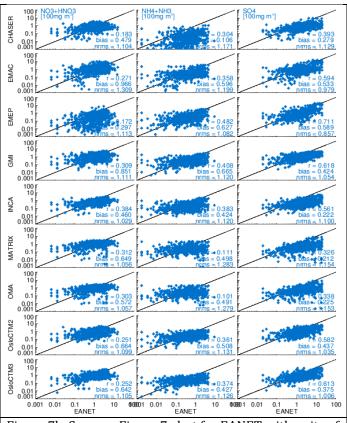


Figure 7b. Same as Figure 7a but for EANET with units of 100mg m⁻³.

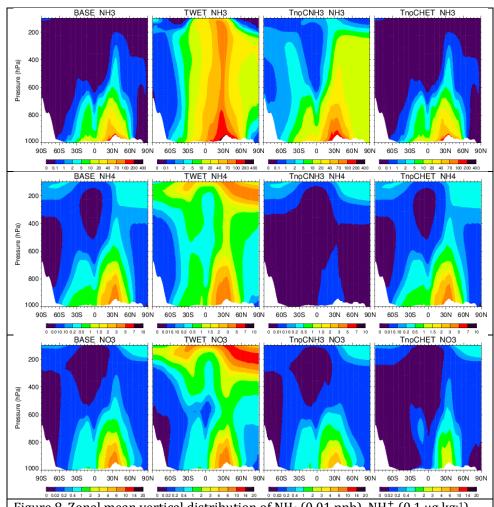


Figure 8. Zonal mean vertical distribution of NH $_3$ (0.01 ppb), NH $_4^+$ (0.1 μ g kg $^{-1}$) and NO $_3^-$ (0.05 μ g kg $^{-1}$) from base and three sensitivity experiments explained in Table 6.

© Author(s) 2017. CC-BY 3.0 License.

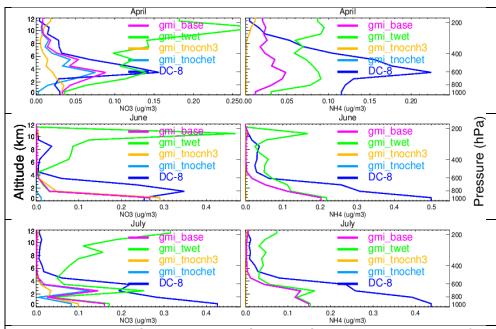


Figure 9. Comparison between GMI simulations and ARCTAS measurements of NH_4^+ and NO_3^- from base and three sensitivity experiments explained in Table 6. Note the light blue line for $[NH_4^+]$ is frequently underneath the peak line.

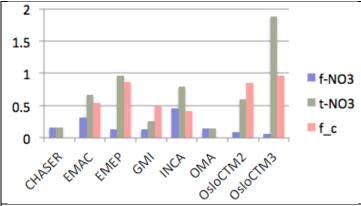


Figure $10. NO_3^-$ fine mode burden (f-NO3, Tg), total burden (t-NO3, Tg), and coarse mode fraction (f_c) for the eight AeroCom models.